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Overview

My research focuses on understanding what can be validly inferred about human behavior from computer vision
systems deployed in real-world environments. Rather than treating vision models as abstract predictors evaluated
solely through benchmark performance, I approach deployed sensing systems as scientific instruments: they make
certain phenomena observable under specific constraints, while rendering others latent or fundamentally inaccessible.
The central question that motivates my work is not simply how accurately models perform, but how the assumptions
embedded in sensing, labeling, and representation constrain the claims that can be supported.

This perspective has emerged through sustained engagement with vision systems that must operate continuously,
degrade gracefully, and remain interpretable under real operational conditions, including my current work at Standard
AI. Building systems that must function over long time horizons has shaped my confidence in these views: deployment
acts as a forcing function that exposes hidden assumptions, brittle representations, and overconfident claims in ways
that offline experimentation often does not.

Deployed Vision Systems as Instruments

In contrast to controlled laboratory datasets, deployed vision systems operate under persistent and irreducible con-
straints: fixed camera geometries, occlusions, missing data, privacy requirements, and long-term operational drift.
These conditions shape not only model performance, but also what aspects of human behavior are observable in the
first place.

Many commonly reported outputs—tracks, poses, dwell times, or behavioral segments—are best understood as proxy
measurements. They are neither direct observations of intent nor complete descriptions of action, but partial, instrument-
dependent representations. As Bowker and Star argue in their study of classification systems, such representations
embed assumptions that become invisible over time, even as they exert material consequences on downstream anal-
ysis and decision-making [1]. Treating proxy measurements as ground truth risks overstating the scope of inference,
particularly when evaluation is decoupled from the conditions under which the data were produced.

Behavioral Representation and Structure

A second thread of my research concerns how human behavior is represented once it has been rendered observable.
Continuous trajectories, discrete events, and learned behavioral tokens each impose different inductive biases and
support different classes of questions.

Early models of pedestrian dynamics, such as the social force formulation, introduced a now-standard abstraction of
pedestrian behavior as continuous trajectories shaped by interactions and environmental constraints [2]. My interest
is not in the specific mechanics of such models, but in how representational choices—whether physical, statistical, or
learned—mediate what aspects of behavior become salient and what claims they can support. Rather than advocating
for a single representation, I study how these choices interact with downstream analyses, influencing interpretability,
robustness, and the propagation of uncertainty.
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Prediction, Evaluation, and Limits of Inference

Prediction in real-world behavioral systems raises distinct challenges from those encountered in benchmark settings.
Predictive models are often evaluated on short horizons, homogeneous contexts, or artificially balanced datasets, ob-
scuring the operational meaning of prediction under deployment conditions.

Following classical results in statistical learning theory, generalization must be understood as contingent on the align-
ment between model class, data-generating process, and evaluation regime [3]. In deployed systems, non-stationarity,
partial observability, and class imbalance are the norm rather than the exception. My work examines prediction as a
conditional statement: given a particular sensing configuration, representation, and operational context, what forms of
future behavior can be anticipated with calibrated uncertainty—and where prediction should explicitly abstain.

Broader Implications

While retail environments provide a practical and scalable setting for this research, the implications extend beyond
any single domain. Structured, repeatable physical spaces with sustained human activity offer a unique substrate for
studying behavior at scale, informing simulation, robotics, and broader efforts toward physical world modeling.

At the same time, this work argues for epistemic restraint. Richer data and more powerful models do not eliminate
the need to reason carefully about what is observable, what is inferred, and what remains unknowable. Progress in
physical AI will depend not only on model capacity, but on clarity about the assumptions that link data to claims.

Relationship to My Work

My published research should be read as a series of empirical probes into these questions, each grounded in deployed
systems and motivated by specific measurement challenges. Collectively, they reflect an effort to align technical
innovation with principled inference, ensuring that advances in perception translate into knowledge that is both useful
and defensible.

This document is intended as a research perspective rather than a comprehensive survey or project proposal. Updated versions may
reflect evolving empirical findings, but the emphasis on measurement, assumptions, and inference is intended to remain stable over
time.
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