

1 MICRO-SCALE SPATIAL MODIFICATION AND PEDESTRIAN 2 BEHAVIOR

3 CALVIN BRESEMAN^{a,*}, FRANCESCO ZANLUNGO^{a,b}, IGOR MOISEEV^a,
4 DAVID M. WOOLLARD^a

5 ^a Standard AI, San Francisco, USA

6 ^b Department of Physics and Chemistry, University of Palermo, Italy

7 * corresponding author: calvin.bresemann@standard.ai

8 ABSTRACT. This paper proposes a flexible framework for hypothesis testing of behavioral changes in
9 pedestrians in field environments and provides a case study demonstrating its application. The framework
10 employs computer-vision-based 3D tracking using existing CCTV networks to collect uncontrolled,
11 ecological data of pedestrian movement and extracts the nature and duration of pedestrian behaviors
12 without prior assumptions. To evaluate the framework, we conducted a case study in a specialty
13 retailer where, after collecting control data, pedestrian flow was intentionally constricted by introducing
14 in-aisle obstacles. We observed a marked rise in traversal and navigation of the aisle accompanied by
15 reductions in browsing and deliberation. We conclude that this framework offers utility in optimizing
16 retail environments and can be generalized to model the effects of environmental changes on behavior
17 in spaces where loitering, dwell time, or free flow of traffic are relevant design considerations.

18 KEYWORDS: Pedestrian behavior, Spatial design, Machine vision, Behavior classification.

1. INTRODUCTION

2 Understanding how the design of physical environments shapes human movement and decision-making
3 is a central question in both applied and theoretical research on pedestrian dynamics.

1.1. MOTIVATION

4 The ability of spatial design to shape pedestrian behavior has drawn considerable public and scholarly
5 attention over recent decades [1–5]. Despite the important ethical and practical ramifications of this area of
6 research, there remains a dearth of methods to quantify, model, and test the impact of spatial alterations
7 on pedestrian behavior [6]. For clarity of discussion,
8 it is useful to informally group research in pedestrian
9 dynamics into three broad methodological domains
10 (following categorization influenced by [7]):

- 11 (1.) Modeling individual pedestrian movement across
12 varying densities.
- 13 (2.) Modeling collective or crowd movement at high
14 densities.
- 15 (3.) Examining how environmental changes influence
16 pedestrian behavior, particularly path selection.

17 The concentration of work in the first two domains
18 reflects not only the critical importance of safety-
19 related applications but also the practical constraints
20 of existing research tools. Person-counting and path-
21 tracking approaches are comparatively straightforward
22 to deploy and validate, whereas capturing fine-
23 grained, unscripted behaviors in natural environments,
24 including semi-structured indoor settings such as retail
25 spaces – where environmental influences on pathing

26 have drawn significant attention [8–10] – remains technically and logically challenging.

27 Many environmental modifications in real-world
28 settings do not elicit large or immediately observable
29 behavioral shifts, as evidenced by the literature on
30 behavioral nudging—which further illustrates the difficulty of detecting subtle or distributed behavioral
31 changes across populations [11]. As a result, design decisions outside of regulatory mandates often rely more
32 on architectural intuition, established conventions,
33 and cost considerations than on the type of rigorous,
34 data-driven experimentation that characterizes digital
35 user experience (UX) research. Expanding the empirical
36 reach of pedestrian studies therefore requires more
37 sensitive observational and analytical tools capable of
38 detecting nuanced behavioral variation in response to
39 environmental design.

40 In response to these limitations, this paper introduces a methodological and technical framework for
41 testing how physical environmental changes influence
42 pedestrian behavior, and demonstrates its use through
43 a case study centered on a controlled field experiment
44 implemented in collaboration with a US-based specialty
45 retailer.

1.2. CONTRIBUTIONS

46 This paper makes two primary contributions to the
47 field of pedestrian dynamics.

48 First, it introduces a methodological and technical
49 framework for conducting controlled field studies that
50 measure subtle and complex changes in pedestrian
51 behavior resulting from modifications to the built
52 environment. The framework integrates advances in
53 pose-based 3D tracking, trajectory segmentation, and

1 unsupervised behavioral modeling into a unified process
 2 for hypothesis testing in naturalistic settings.
 3 This contribution is both methodological and technical in nature; providing both a systematic approach
 4 for behavioral experimentation in the wild and demonstrating a scalable architecture that operates on existing
 5 CCTV infrastructure. Together, these elements enable researchers and practitioners to quantify behavioral effects that have traditionally been observable
 6 only in highly instrumented laboratory environments.

7 Second, we present a case study centered on a controlled field experiment implemented in collaboration
 8 with a US-based specialty retailer. The seven-week study evaluates the behavioral impact of in-aisle promotional shelving, testing a long-standing assumption
 9 in retail design. While uncovering new behavioral phenomena is not the primary aim of this work, the case study demonstrates the framework's ability to detect and statistically evaluate subtle but important behavioral shifts in uncontrolled, real-world conditions.

10 Broadly, this work advances the empirical and technical capacity of pedestrian dynamics by bridging experimental rigor with practical deployability, offering a pathway to study how environmental design choices shape human behavior at scale.

2. METHODOLOGICAL FRAMEWORK

11 This section outlines both the conceptual design and practical implementation of a generalizable framework for testing how changes in physical environments influence pedestrian behavior. The framework is adaptable across contexts, scalable to real-world environments, and independent of any specific computer vision or machine learning pipeline. It is organized into two complementary components: the **Conceptual Framework**, which defines the logic and structure of the method, and the **Implementation**, which describes the specific algorithms and data processing techniques used in our controlled field experiment.

2.1. CONCEPTUAL FRAMEWORK

12 At its core, the framework transforms raw multi-camera video streams into interpretable measures of behavioral change through a structured sequence of automated and human-in-the-loop steps. Each stage serves a distinct conceptual role:

- 13 • **Observation.** Using existing multi-camera or CCTV infrastructure, the system captures pedestrian motion at sufficient temporal and spatial resolution to reconstruct trajectories without instrumenting participants or altering their behavior.
- 14 • **Representation.** Multi-view geometry and pose estimation are used to convert raw imagery into three-dimensional trajectories: continuous physical records of movement through space and time.
- 15 • **Segmentation.** These trajectories are divided into behaviorally homogeneous intervals using an unsupervised process that detects changes in movement

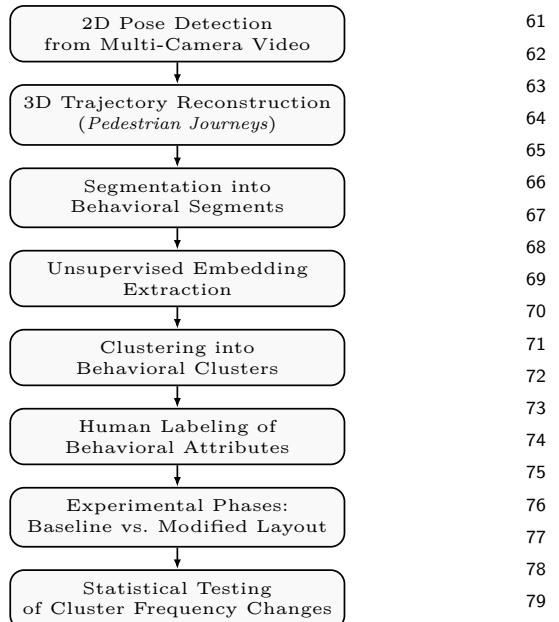


FIGURE 1. Conceptual overview of the methodological framework. The process transforms raw video data into behavioral representations and enables hypothesis testing on how spatial modifications influence pedestrian behavior.

16 dynamics. Each segment represents a single behavioral episode in the physical sense defined above.

- 17 • **Abstraction.** Each behavioral segment is transformed into a compact representation, or embedding, that captures its intrinsic temporal and geometric characteristics.
- 18 • **Aggregation.** Segments with similar embeddings are grouped into clusters, yielding recurring patterns of motion that constitute the empirical basis for behavioral classes.
- 19 • **Interpretation.** Human reviewers label a limited number of representative samples from each cluster with high-level behavioral attributes of interest. These annotations anchor the unsupervised model in human-understandable semantics.
- 20 • **Comparison.** Finally, the distribution of behavioral clusters is compared across experimental conditions (e.g., before and after a spatial modification) to test hypotheses about how changes to the environment influence pedestrian behavior.

21 Together, these stages define a generalizable process for observing, representing, and statistically testing behavioral change in naturalistic settings. The framework is designed to be modular and scalable for large environments where controlled experiments are otherwise infeasible, allowing substitution of alternative vision, embedding, or clustering algorithms in diverse environments. In the following section, we describe the specific algorithms and data processing techniques used to implement this framework in our field experiment.

1 **2.2. SPECIFICALLY ADDRESSED CONCEPTUAL
2 CHALLENGES**

3 Unlike in laboratory settings, pedestrian motion in
4 natural environments is continuous, unstructured, and
5 often driven by implicit intent rather than observable
6 goals. This makes it difficult to define where one
7 behavior ends and another begins, or to specify the
8 full set of behaviors a pedestrian might exhibit. In
9 practice, the act of defining, selecting, and categorizing
10 behaviors introduces human bias and limits
11 generalization. Measuring behavioral change requires
12 addressing specific critical problems, such as:

13 (1.) **Behavioral Definition.**

14 (a) What constitutes a behavior?
15 (b) What marks the start and end of a behavior?

16 (2.) **Behavioral Selection.**

17 (a) What are all of the behaviors a pedestrian can
18 engage in?
19 (b) Which of those behaviors are relevant to the
20 testing environment?

21 (3.) **Behavioral Extraction.**

22 (a) How can behavioral occurrences be captured
23 and categorized?
24 (b) How can this be done at sufficient scale and
25 reasonable cost?

26 Our framework attempts to resolve the difficult questions of definition and selection by redefining behavior in operational rather than semantic terms and, by doing so, elide the question of selection to the greatest possible extent. We treat “behaviors” as nothing more than processes that exhibit internal continuity and self-similarity while also displaying external discontinuity and dissimilarity. This perspective eliminates the need to predefine behavioral categories and instead allows them to emerge empirically from observed motion. We also make a categorical differentiation between behaviors and their attributes: while behaviors are ineffable and latent, their attributes can be binary, classifiable, and contribute to understanding the emergent behavioral classes.

27 **2.3. IMPLEMENTATION**

28 The conceptual framework was operationalized using a combination of computer-vision, statistical, and human-in-the-loop processes designed to transform raw multi-camera video data into interpretable behavioral metrics. While the specific implementation described here was developed in collaboration with Standard AI and makes use of proprietary systems, all processing stages can be reproduced using open-source alternatives.

29 **2.3.1. POSE ESTIMATION AND 3D TRAJECTORY
30 RECONSTRUCTION**

31 Video data from multiple overlapping cameras were
32 first processed using pose-estimation models to extract

33 two-dimensional joint locations for each visible individual in image space. These detections were temporally linked within each camera view and then triangulated across cameras to produce three-dimensional pedestrian trajectories, hereafter referred to as “pedestrian journeys.”

34 Recent advances in markerless motion capture have shown that pose-based methods can achieve near-motion-capture accuracy using only multi-camera or CCTV setups [12, 13]. Following a similar approach, the system leverages synchronized video inputs from existing overhead and fixed-angle cameras to reconstruct continuous 3D trajectories without instrumenting participants. Each trajectory is represented as a time-ordered series of keypoints describing the spatial coordinates of the head, torso, and lower limbs at 10 Hz.

35 **2.3.2. TRAJECTORY SMOOTHING AND BEHAVIORAL
36 SEGMENTATION**

37 Reconstructed trajectories were filtered using a fourth-order Butterworth low-pass filter to suppress high-frequency noise and mitigate pose jitter caused by occlusions or short-term estimation errors. The smoothed trajectories were then segmented into behaviorally consistent intervals using an unsupervised changepoint detection algorithm [14]. This method identifies points of transition in motion dynamics by examining temporal discontinuities in the derivatives of position and orientation. This segmentation process operationalizes the definition of “behavior” described in Section 2.1: each segment represents a period of self-similar movement bounded by points of discontinuity, independent of any predefined behavioral taxonomy. Segments are interpolated to a constant temporal length and normalized by total displacement to ensure that subsequent comparisons reflect behavioral structure rather than individual differences in speed or physical ability. The overall effect is of partitioning each trajectory into sequences of internally coherent motion.

38 **2.3.3. BEHAVIORAL EMBEDDING AND CLUSTERING**

39 Each normalized segment is transformed into a low-dimensional embedding using multi-functional principal components analysis (MFPCA). MFPCA models the trajectories and their derivatives such as velocity and angular velocity as continuous functions and projects them onto a set of orthogonal basis functions that capture the principal modes of variation across all segments. This approach (similar to [15]) yields a compact, unsupervised representation of motion dynamics that captures the most informative axes of behavioral differentiation.

40 The resulting embeddings are clustered using k -means to identify recurring patterns of motion. Cluster membership reflects the proximity of behavioral segments in the embedded space; segments grouped together exhibit kinematic signatures most explicable by similar functional mechanisms, or from another

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 perspective, permit the highest degree of reconstruction
 2 of the original pedestrian motion. These clusters
 3 form the empirical basis for defining behavior classes
 4 in a data-driven manner, as the rates at which various
 5 pedestrian activities occur vary substantially between
 6 clusters, as seen below.

7 **2.3.4. HUMAN LABELING AND ATTRIBUTE 8 CALIBRATION**

9 To facilitate interpretation and ensure methodological
 10 validation, a sample of segments from each behavioral
 11 cluster were reviewed by trained human annotators.
 12 Labelers assigned binary behavioral attributes such as
 13 traversal, browsing, deliberation, or item interaction,
 14 according to a predefined taxonomy relevant to
 15 retail contexts. These attributes serve as interpretable
 16 proxies for latent behavioral modes. By aggregating
 17 attribute frequencies within clusters, we establish a
 18 mapping between unsupervised cluster identities and
 19 human-interpretable behaviors. Statistical hypothesis
 20 testing may be performed on cluster frequencies
 21 without this baseline, but establishing the baseline
 22 permits researchers to validate the inherent logic in
 23 the suggested direction of behavioral change and ex-
 24 plain the consequences of such a change in concrete
 25 terms.

26 Together, these stages constitute an end-to-end system
 27 for detecting, representing, and quantifying behavioral
 28 change in naturalistic environments. The framework's
 29 modular structure allows each component to be substi-
 30 tuted or extended in line with particular requirements
 31 or technological advances. In the following section,
 32 we demonstrate the framework's application through
 33 a controlled field experiment conducted in a retail
 34 environment.

37 **3. CASE STUDY: RETAIL APPLICATION**

38 This section presents a case study demonstrating
 39 the application of the proposed framework to a real-
 40 world retail environment. The goal is to validate the
 41 framework's ability to detect and interpret behav-
 42 ior changes resulting from a controlled modification
 43 to a store's physical layout. In collaboration with
 44 a US-based specialty retailer, we conducted a field
 45 experiment designed to assess how changes in aisle ge-
 46 ometry influence pedestrian movement and browsing
 47 behavior.

49 **3.1. CONTEXT**

50 Physical retailers test the success of in-store changes
 51 through reference to store transactions. The complex
 52 nature of retail environments, where sales are influ-
 53 enced by numerous outside factors makes it difficult
 54 for even sophisticated sales-based analysis to attribute
 55 changes in sales to in-store experimentation.

56 The prevalence of promotional in-aisle shelves across
 57 retailers has increased in recent decades. While exper-
 58 imentation is difficult, industry wide trends such as
 59 this typically have been shown to positively impact

60 sales and profitability, and this change has an inherent
 61 logic as promotional shelves increase the viewable area
 62 within an aisle in the same amount of physical space
 63 by introducing folds to the previously flat shelf.

64 However, this generally positive direction of effect
 65 does not mean that promotional shelves have been
 66 implemented in a way which is ubiquitously positive
 67 or optimized. Retailers have been moving toward
 68 very high counts of promotional shelves in each aisle,
 69 with the expectation of continued positive marginal
 70 returns. Existing research such as [16, 17] offered us
 71 reason to believe that desirable pedestrian behaviors
 72 do not simply scale linearly with the count of pro-
 73 motion shelves and that the particular details of
 74 implementation are significant.

75 **3.2. EXPERIMENTAL DESIGN**

76 The study was conducted over a seven-week period in
 77 a specialty retailer's store aisle. Data collection lever-
 78 aged a commercial vision-based analytics platform
 79 developed by Standard AI, deployed on the retailer's
 80 pre-existing overhead security camera infrastructure.
 81 Finetuned 2D pose detection models, each operating
 82 at 10 FPS, generated multi-view detections that were
 83 triangulated into 3D pedestrian trajectories, enabling
 84 continuous observation of natural shopper behavior
 85 without direct intervention.

86 During the first four weeks (the baseline phase),
 87 pedestrian activity was recorded under normal layout
 88 conditions. After week four, the retailer introduced
 89 an intervention consistent with its established mer-
 90 chandising principles: the addition of promotional
 91 shelving units along the aisle's south side, previously
 92 unoccupied by such fixtures. This change reduced the
 93 navigable width from approximately 2.5 m to 1.7 m,
 94 producing a situationally plausible but physically sig-
 95 nificant constriction. The intended design goal was
 96 to encourage traversal-oriented movement by subtly
 97 reducing the space available for browsing. The sub-
 98 sequent four weeks (the intervention phase) were ob-
 99 served under this modified configuration. No other
 100 layout, pricing, or promotional changes occurred dur-
 101 ing this period.

102 **3.3. RATIONALE AND HYPOTHESIS**

103 While promotional shelves are widely used in retail to
 104 increase product exposure and sales, their behavioral
 105 effects are rarely isolated or quantified. Prior studies
 106 in pedestrian dynamics suggest that spatial constrict-
 107 tion may suppress browsing behavior by channeling
 108 movement along narrower, more linear trajectories
 109 [18, 19]. However, empirical verification of such ef-
 110 fects in real-world environments remains limited.

111 Intuition derived from the social force model guided
 112 our thinking in devising a pedestrian experiment in a
 113 retail environment which would be more successful in
 114 challenging existing retailer assumptions about spa-
 115 tial layout, though a rigorous examination was not
 116 pursued. As such we briefly detail a sketch of the
 117 118

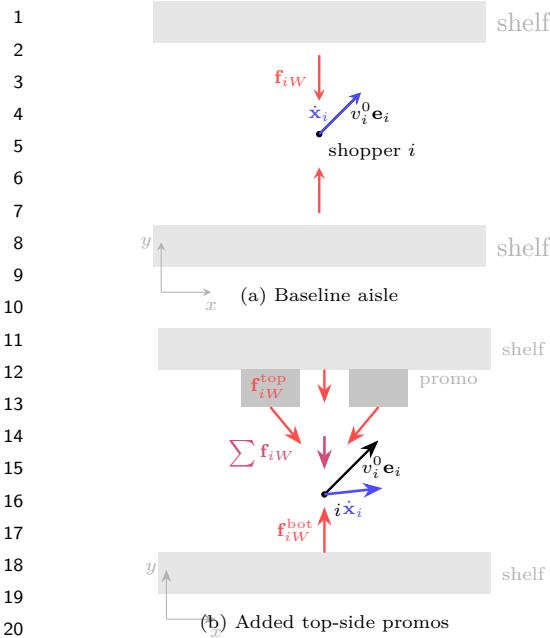


FIGURE 2. One possible consequence of a social-force baseline in a shelf aisle: (b) symmetric top-side promos raise repulsion on that side, pushing the shopper away and yielding more shelf-parallel motion.

way that the social force model guided our thinking in approaching the experimental design.

We use a standard social-force formulation [20, 21]. For pedestrian i (mass m_i ; position \mathbf{x}_i ; velocity \mathbf{v}_i):

$$m_i \frac{d\mathbf{v}_i}{dt} = m_i \frac{v_i^0 \mathbf{e}_i - \mathbf{v}_i}{\tau_i} + \sum_{j \neq i} \mathbf{f}_{ij} + \sum_W \mathbf{f}_{iW}.$$

$v_i^0 \mathbf{e}_i$ is the desired velocity. \mathbf{f}_{ij} are pedestrian repulsions. \mathbf{f}_{iW} are wall/fixture repulsions.

A common repulsive form is $\mathbf{f}_{ij} = A \exp\left(\frac{r_{ij} - d_{ij}}{B}\right) \mathbf{n}_{ij}$, with d_{ij} distance, r_{ij} sum of radii, and \mathbf{n}_{ij} the normal from j to i . Similar terms apply for \mathbf{f}_{iW} .

Although likely too simple to describe, in a quantitative way, human navigation in a complex environment, we deemed this model sufficient for a qualitative understanding of pedestrian behavior in presence of static obstacles.

Implications in a shelf aisle (qualitative):

- (1) As shelves approach (narrower aisle), $\|\mathbf{f}_{iW}\|$ grows, suppressing the shelf-normal component of motion; paths become more parallel to shelves. This reduces natural, orthogonal viewing opportunities of facings.
- (2) Added promotional fixtures increase local repulsions (from walls and other shoppers). When placed on the same side as the intended target shelf, symmetric fixtures fore/aft cancel lateral x -components of force and yield a net y (shelf-normal) push *away* from that side, diminishing browsing near promotions.

These sketches motivate our pre-registered hypothesis: **Reduced width from promos on the target**

side leads to lower orthogonal viewing, which in turn reduces local browsing near promotions.

From this perspective, we hypothesized that narrowing the aisle would reduce browsing and deliberation behaviors, while increasing traversal and navigational activity. This effect would be detectable as a redistribution of behavioral cluster frequencies under the proposed framework. The null hypothesis of this test was that the frequency of the occurrence of behavioral clusters would prove unchanged between the baseline phase and the test.

3.4. DATA COLLECTION AND ANALYSIS

Data were collected continuously over the seven-week study period, encompassing both baseline and intervention phases. Each shopper's movement through the camera coverage area was reconstructed as a 3D trajectory at 10 Hz using triangulated detections from finetuned 2D pose models operating on the retailer's existing overhead security cameras. As detailed in Section 2.1, trajectories were preprocessed, segmented into behaviorally consistent intervals, embedded via multi-functional principal components analysis, and clustered to yield interpretable behavioral categories.

For this case study, we specified that the clustering model should produce 22 distinct behavioral clusters. This number was empirically chosen as a balance between breadth and interpretability: large enough to capture the diversity of micro-behaviors observed in retail settings, yet small enough to permit qualitative validation through manual review of representative trajectory samples. After initial trials with higher and lower cluster counts, 22 was found to yield clusters that were internally cohesive, externally distinct, and qualitatively consistent when cross-checked against synchronized video segments. This step ensured that cluster membership meaningfully described behavior rather than noise or individual differences in physical ability.

To calibrate these clusters with interpretable meaning, we leveraged a pre-existing ground-truth dataset of 2,500 human-labeled behavioral segments drawn from other retail environments. Each segment was annotated with binary indicators for ten action attributes: phone use, shopping cart use, item takes, puts, and touches, traversal, browsing, deliberation, uncertainty, and shelf attention. Averaging these attribute frequencies within each cluster yielded an attribute-rate vector describing the behavioral composition of that cluster.

Aggregating across the full observation window produced hundreds of thousands of behavioral segments. The relative frequency of each behavioral cluster was computed separately for the baseline and intervention periods, forming the input distribution for statistical testing. For completeness, we also examined journey-level structure by grouping sequences of segment-level clusters into a small number of meta-clusters describing whole trips. While these are discussed further in

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

1 Section 4, they provided additional context for interpreting how local behavioral changes propagate to the
 2 scale of entire shopping journeys.
 3

5 3.5. EXPERIMENTAL CONTROLS

6 Field experiments conducted outside of controlled
 7 laboratory settings are inherently vulnerable to con-
 8 founding influences. In retail environments, non-
 9 experimental shifts in pedestrian behavior may arise
 10 from both *exogenous* factors (e.g., seasonality, adver-
 11 tising, or social media trends) and *endogenous* factors
 12 (e.g., changes to layout, product placement, signage,
 13 or pricing). Without explicit controls, hypothesis tests
 14 risk capturing these effects rather than isolating the
 15 impact of the intended intervention.
 16

17 To mitigate these risks, we partnered with a retailer
 18 whose business model and collaboration allowed us to
 19 reduce confounding without requiring additional sta-
 20 tistical correction. The retailer is a specialized seller
 21 of staple goods with exceptionally low seasonality
 22 relative to the broader industry. Customers are habit-
 23 uated to purchasing specific brands at time-invariant
 24 rates. The core offerings carry high switching costs
 25 and the effects of external advertising or other similar
 26 stimuli operate on timescales longer than our study
 27 window. To further limit potential confounds, the re-
 28 tailer made no layout, promotional, or price changes at
 29 the study location during data collection. This stabil-
 30 ity provided a unique opportunity to isolate behavioral
 31 effects attributable solely to the spatial modification.
 32

32 3.6. STATISTICAL EVALUATION

33 Using the labeled calibration described above, each
 34 behavioral cluster has a characteristic vector of at-
 35 tribute rates (e.g., average frequency of browsing or
 36 traversal). Let $p_k^{(0)}$ and $p_k^{(1)}$ denote the proportions
 37 of segments assigned to cluster k during the baseline
 38 and intervention phases. The null hypothesis is that
 39 the intervention does not alter the distribution of
 40 behavioral clusters:
 41

$$42 H_0 : p_k^{(0)} = p_k^{(1)} \quad \text{for all } k = 1, \dots, 22. \\ 43$$

44 A 22×2 contingency table of cluster frequencies was
 45 constructed, and a chi-square test of independence
 46 was applied. Standardized residuals identified which
 47 clusters contributed most to deviations from the null.
 48 Combining these shifts with each cluster's attribute
 49 profile enabled estimation of aggregate behavioral
 50 change across the study period, revealing how physical
 51 alterations in space translated into measurable shifts
 52 in pedestrian behavior.
 53

55 4. RESULTS AND EVALUATION

56 This section reports the empirical outcomes of the
 57 retail field experiment and assesses how effectively
 58 the proposed framework captured and explained those
 59 behavioral changes.
 60

4.1. BEHAVIORAL EFFECTS OF THE INTERVENTION

61 Chi-square analysis revealed statistically significant
 62 changes in pedestrian behavior at both the segment
 63 and journey levels ($p < 10^{-16}$). As such, we reject
 64 the null hypothesis of behavioral stasis after the in-
 65 troduction of pedestrian flow constriction. That the
 66 spatial intervention produced a measurable redistri-
 67 bution of behavioral patterns lends credence to the
 68 proposed testing framework, especially as these shifts
 69 were broadly consistent with expectations derived
 70 from the social-force model and prior research in con-
 71 strained pedestrian dynamics, though they diverged
 72 from the retailer's initial assumptions.
 73

74 At the segment level, most of the 22 behavioral
 75 clusters decreased in relative frequency, while five
 76 clusters occurred 10% or more frequently. Cluster 8,
 77 already a common behavioral mode, exhibited a 33%
 78 increase in occurrence following the intervention and
 79 contributed more than half of the total chi-square
 80 test statistic (Fig. 3). This cluster was characterized
 81 by continuous forward motion with minimal shelf en-
 82 gagement; behavior characterizable as traversal rather
 83 than browsing. While individual cluster-level signifi-
 84 cance cannot be directly inferred in a multi-category
 85 test, the aggregate pattern indicates that behaviors
 86 associated with engagement decreased while those
 87 associated with transit increased.
 88

89 When the cluster membership migrations are
 90 mapped onto human-labeled behavioral attributes
 91 (Fig. 4), this shift manifests as a marked increase in
 92 the rate of the "exclusive traversal" attribute. These
 93 segments were ones in which shoppers moved through
 94 the aisle without attending to the shelves. Attributes
 95 indicating any degree of mental or physical engage-
 96 ment with the environment (e.g., browsing, deliber-
 97 ation, item interaction) declined in frequency, while
 98 "uncertainty" rose slightly. In essence, shoppers en-
 99 gaged less frequently in exploratory or deliberative
 100 behaviors and were more likely to treat the aisle as
 101 a passageway. This lends additional credence to the
 102 formal hypothesis testing conducted above.
 103

104 As well as at the segment level, the constriction pro-
 105 duced statistically significant and consistent results
 106 at the journey level, indicating that the constriction
 107 can alter entire trips, not just brief segments. The
 108 prevalence of trip-level clusters 0, 3, and 4 increased,
 109 while clusters 1 and 2—those associated with higher
 110 browsing and item-interaction rates—declined (Fig. 3).
 111 Qualitative review of video samples confirmed a shift
 112 toward more linear, goal-directed movement with re-
 113duced spatial exploration.
 114

115 Overall, the findings indicate that narrowing the
 116 aisle through added promotional shelving suppressed
 117 behaviors associated with product engagement and
 118 increased direct traversal, consistent with the hypoth-
 119 esis that physical constriction elevates repulsive social
 120 forces and reduces opportunities for orthogonal (shelf-
 121 normal) movement.
 122

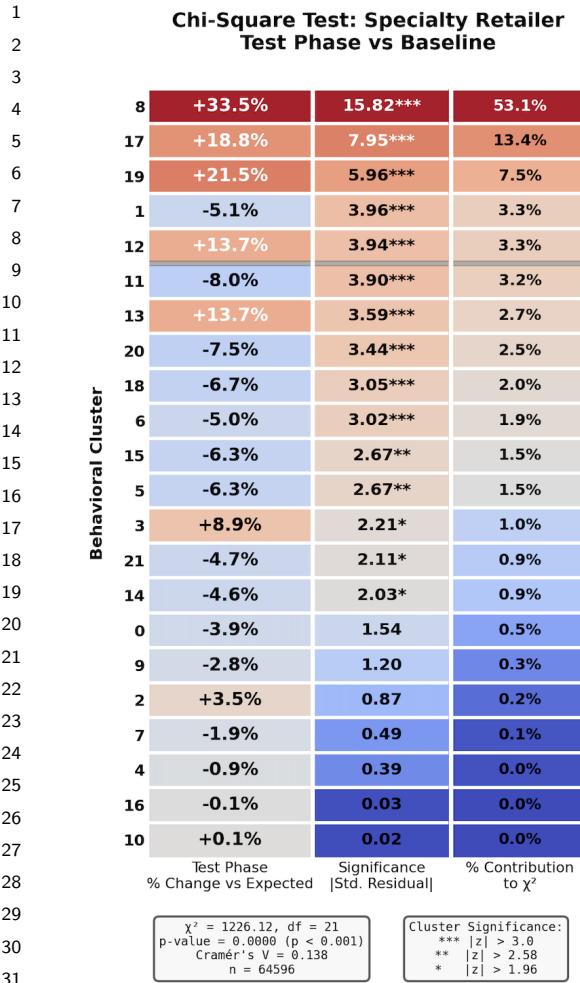


FIGURE 3. Chi-square contributions of behavioral clusters before and after intervention. Cluster 8, representing traversing behaviors, dominates the overall test statistic.

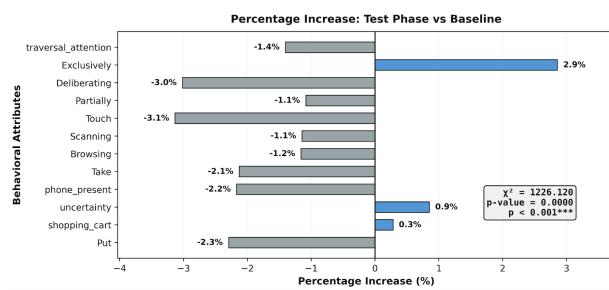
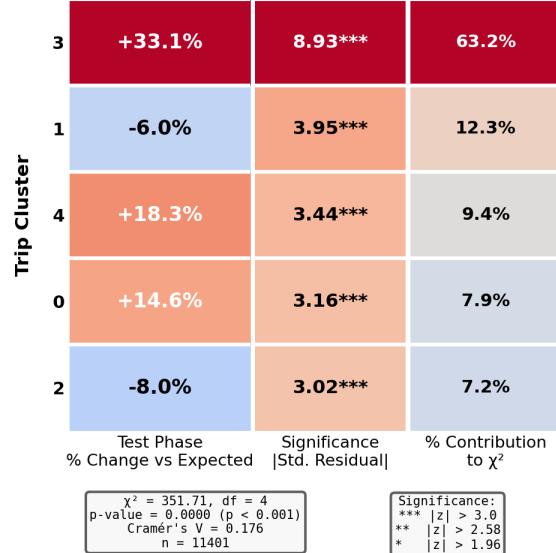


FIGURE 4. Change in attribute-level behavioral frequencies following intervention. Traversal increased, while browsing and item interaction decreased.

4.2. FRAMEWORK PERFORMANCE AND VALIDATION

The case study also served as a practical validation of the proposed analytical framework. The combination of multi-camera 3D tracking, behavioral segmentation, and unsupervised clustering successfully detected nuanced shifts in shopper behavior without any manual intervention during data collection. The resulting be-

Chi-Square Test: Trip-Level Clustering Test Phase vs Baseline



Attribute Rates by Trip-Level Cluster

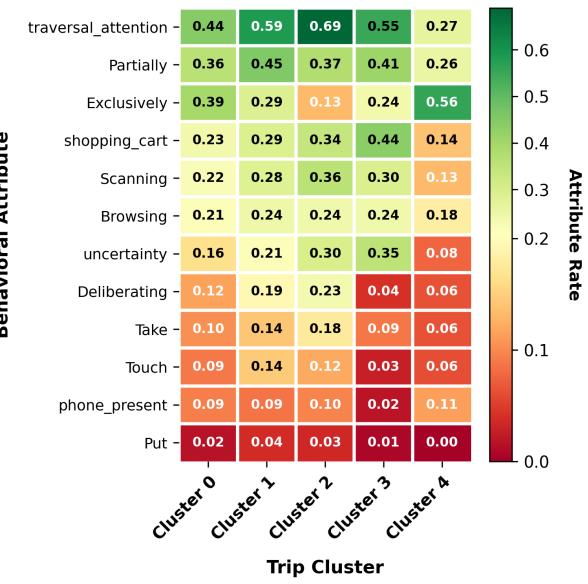


FIGURE 5. (Top) Chi-square analysis of journey-level clusters. (Bottom) Corresponding attribute-rate profiles show reduced browsing and deliberation in post-intervention trips.

havioral clusters demonstrated internal consistency and interpretability: visual inspection of representative segments confirmed that members of the same cluster exhibited coherent motion patterns.

The framework's sensitivity to subtle, population-level changes was evident in its ability to capture a redistribution of behavioral modes in response to an environmental modification that would likely go unnoticed by traditional retail analytics, which typically rely on aggregate sales or dwell-time proxies. The experimental design of baseline and treatment phases enabled statistical validation through standard inferential tests, avoiding the need for ad hoc heuristics or

1 subjective interpretation. The overwhelming strength
2 of the significance detected in the chi-square analysis
3 points to the possibility of shortened testing phases,
4 allowing for testing that further reduces the influence
5 of confounders.

6 These findings show that modest spatial modifications
7 can exert outsized influence on pedestrian dynamics,
8 even at low densities, and highlight the value
9 of micro-scale analysis for retail and urban planning
10 alike. The framework can generalize to other contexts:
11 public seating placement, signage efficacy in trans-
12 port hubs, or balancing dwell time with circulation in
13 museum galleries [3, 11]. By coupling high-resolution
14 trajectory tracking, behavioral segmentation, and con-
15 trolled spatial interventions, this study offers a re-
16 producible, data-driven lens on how design nudges
17 pedestrian behavior. Beyond retail, such methods
18 enrich pedestrian- and evacuation-dynamics research
19 by enabling quantitative tests of spatial design.

20 From a practical perspective, the framework op-
21 erated entirely on existing CCTV infrastructure, re-
22 quiring no additional instrumentation or human ob-
23 servation, and processed data at near-real-time rates.
24 While the labeled attributes enhanced our understand-
25 ing of the behavioral clusters, these labels were re-
26 quired only for interpretability; the framework still en-
27 ables hypothesis testing without prior domain knowl-
28 edge. This demonstrates its feasibility for broader de-
29 ployment in dynamic environments where behavioral
30 validation would otherwise be costly or impractical.

31 **4.3. DISCUSSION AND BROADER IMPLICATIONS**
32 The results are intuitively consistent and empirically
33 significant, challenging prevailing assumptions within
34 retail design. The intervention’s effect of dampened
35 browsing and deliberation while increasing straightfor-
36 ward traversal suggests that excessive in-aisle fixtures
37 may impose cognitive and physical friction that dis-
38 courages exploratory movement.

39 While the findings do not refute the long-standing
40 assumption that promotional shelves have a positive
41 marginal impact on sales, they reveal a more complex
42 relationship between the inclusion of in-aisle displays
43 and shopper behavior, suggesting that the point at
44 which their marginal returns become negative may
45 occur earlier than previously believed. Further, these
46 results highlight the power of micro-scale spatial de-
47 sign to shape pedestrian dynamics, even in low-density
48 environments such as retail aisles.

49 Methodologically, the study demonstrates the value
50 of integrating computer-vision-based behavioral seg-
51 mentation with experimental design principles tradi-
52 tionally reserved for controlled laboratory settings.
53 The ability to detect fine-grained, unsupervised be-
54 havioral shifts in real-world environments bridges the
55 gap between simulation-driven pedestrian modeling
56 and in-situ validation.

57 Beyond retail, the framework can extend to other
58 spatial domains, including evaluating how urban de-

59 sign interventions affect enjoyment of public places
60 or how signage placement influences navigation in
61 transportation hubs. By offering a scalable, data-
62 driven means to quantify behavioral response, this
63 approach provides a foundation for empirical testing
64 of environmental design hypotheses across disciplines.

65 Finally, while this case study relied on proprietary
66 3D pose estimation software, implementation of this
67 framework is not reliant on a particular specification
68 of any of the particular steps, and could be replicated
69 using open-source alternatives for pose detection and
70 multi-view reconstruction.

5. CONCLUSION

71 This study introduced and demonstrated a method-
72 ological framework for empirically testing how changes
73 to the built environment influence pedestrian behav-
74 ior in naturalistic settings. By integrating pose-based
75 multi-camera tracking, unsupervised behavioral seg-
76 mentation, and statistical hypothesis testing, the
77 framework enables rigorous, data-driven experimenta-
78 tion outside of controlled laboratory conditions.

79 Through its application in a real-world retail con-
80 text, we showed that even modest spatial modifica-
81 tions, such as adding in-aisle promotional shelving, can
82 produce measurable and interpretable shifts in pedes-
83 trian behavior. The case study confirmed that spatial
84 constriction reduces browsing and deliberation while
85 increasing direct traversal, highlighting how subtle
86 design interventions can meaningfully alter movement
87 dynamics and engagement patterns.

88 Beyond its immediate empirical findings, this work
89 demonstrates that high-fidelity computer vision and
90 unsupervised analytics can bridge the gap between
91 traditional simulation-based pedestrian modeling and
92 field-based behavioral validation. The approach of-
93 fers researchers and practitioners a scalable means of
94 quantifying behavioral responses to design changes,
95 using only existing camera infrastructure and minimal
96 manual supervision.

97 Future work will extend this framework across do-
98 mains and scales—from retail environments to trans-
99 portation hubs and public spaces—and refine its be-
100 havioral taxonomy and statistical inference methods.
101 More broadly, the framework provides a foundation
102 for connecting spatial design and human behavior
103 through reproducible, experiment-based evidence, ad-
104 vancing both the methodological and applied frontiers
105 of pedestrian dynamics.

ACKNOWLEDGEMENTS

106 The authors thank the participating retailer for collab-
107 oration and Standard AI colleagues for technical support.
108 We also gratefully acknowledge the reviewers and PED
109 attendees whose thoughtful questions and feedback helped
110 improve the final manuscript.

1 REFERENCES

2 [1] A. Garcimartín, D. Maza, J. M. Pastor, et al.
3 Redefining the role of obstacles in pedestrian
4 evacuation. *New Journal of Physics* **20**(12):123025,
5 2018. <https://doi.org/10.1088/1367-2630/aaef4ca>

6 [2] J. Zhang, A. Seyfried. Quantification of bottleneck
7 effects for different types of facilities. *Transportation
8 Research Procedia* **2**:51–59, 2014.
9 <https://doi.org/10.1016/j.trpro.2014.09.008>

10 [3] R. K. Dubey, et al. Cognitively grounded floorplan
11 optimization to nudge occupant route choices. SSRN
12 Preprint, 2022. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4003119.

13 [4] B. Hillier, A. Penn, J. Hanson, et al. Natural
14 movement: or, configuration and attraction in urban
15 pedestrian movement. *Environment and Planning B: Planning and Design* **20**(1):29–66, 1993.
16 <https://doi.org/10.1068/b200029>

17 [5] G. Antonini, M. Bierlaire, M. Weber. Discrete choice
18 models of pedestrian walking behavior. *Transportation Research Part B: Methodological* **40**(8):667–687, 2006.
19 <https://doi.org/10.1016/j.trb.2005.09.006>

20 [6] M. A. Centeno, L. 'Alvarez Pomar, G. M. Giraldo.
21 Pedestrian Systems Modelling: Opportunities and
22 Challenges. In *Proc. 14th LACCEI Int. Multi-Conference for Engineering, Education and Technology*. 2016.
23 <https://doi.org/10.18687/LACCEI2016.1.1.265>

24 [7] C. Feliciani, K. Shimura, K. Nishinari. *Introduction to crowd management: Managing crowds in the digital era: Theory and Practice*. Springer Nature, 2022.
25 <https://doi.org/10.1007/978-3-030-90012-0>

26 [8] S. K. Hui, E. T. Bradlow, P. S. Fader. Testing
27 behavioral hypotheses using an integrated model of
28 grocery store shopping path and purchase behavior.
29 *Journal of Consumer Research* **36**(3):478–493, 2009.
30 <https://doi.org/10.1086/599046>

31 [9] J. S. Larson, E. T. Bradlow, P. S. Fader. An exploratory
32 look at supermarket shopping paths. *International Journal of Research in Marketing* **22**(4):395–414, 2005.
33 <https://doi.org/10.1016/j.ijresmar.2005.09.005>

34 [10] M. J. Bitner. Servicescapes: The impact of physical
35 surroundings on customers and employees. *Journal of Marketing* **56**(2):57–71, 1992.
36 <https://doi.org/10.1177/002224299205600205>

37 [11] C. Feliciani, et al. Nudging crowds: When it works,
38 when it doesn't, and why. In *Traffic and Granular Flow '22*, vol. 443, p. 11. 2024.
39 https://doi.org/10.1007/978-981-99-7976-9_2

40 [12] N. Nakano, T. Sakura, K. Ueda, et al. Evaluation of
41 3d markerless motion capture accuracy using openpose
42 with multiple video cameras. *Frontiers in Sports and Active Living* **2**:50, 2020.
43 <https://doi.org/10.3389/fspor.2020.00050>

44 [13] K. Iskakov, E. Burkov, V. Lempitsky, Y. Malkov.
45 Learnable triangulation of human pose. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 7718–7727. 2019.
46 <https://doi.org/10.1109/ICCV.2019.00781>

47 [14] C. Breseman, I. Moiseev, D. M. Woollard.
48 BETWEEN: Boundary Estimation through Time Warping, Energy, and Entropy Neutralization. In *Proceedings of the 2025 International Conference on Knowledge Graphs (ICKG)*. 2025. To appear.

49 [15] F. Johnson, K. Dana. Learning a pedestrian social behavior dictionary. In *Proceedings of the 34th British Machine Vision Conference (BMVC)*. 2023. ArXiv:2212.01426.
50 <https://doi.org/10.48550/arXiv.2212.01426>

51 [16] Y. Han, S. R. Chandukala, S. Li. Impact of different types of in-store displays on consumer purchase behavior. *Journal of Retailing* **98**(3):432–452, 2022.
52 <https://doi.org/10.1016/j.jretai.2021.10.002>

53 [17] B. A. S. Martin. A stranger's touch: Effects of accidental interpersonal touch on consumer evaluations and shopping time. *Journal of Consumer Research* **39**(1):174–184, 2012.
54 <https://doi.org/10.1086/662038>

55 [18] C. A. S. Pouw, G. G. M. van der Vleuten, A. Corbetta, F. Toschi. Data-driven physics-based modeling of pedestrian dynamics. *Physical Review E* **110**(6):064102, 2024.
56 <https://doi.org/10.1103/PhysRevE.110.064102>

57 [19] L. D. Vanumu, K. R. Rao, G. Tiwari. Fundamental diagrams of pedestrian flow characteristics: A review. *European Transport Research Review* **9**(49):1–15, 2017.
58 <https://doi.org/10.1007/s12544-017-0264-6>

59 [20] D. Helbing, P. Molnár. Social force model for pedestrian dynamics. *Physical Review E* **51**(5):4282–4286, 1995.
60 <https://doi.org/10.1103/PhysRevE.51.4282>

61 [21] D. Helbing, I. J. Farkas, T. Vicsek. Simulating dynamical features of escape panic. *Nature* **407**(6803):487–490, 2000.
62 <https://doi.org/10.1038/35035023>