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Abstract. This paper proposes a flexible framework for hypothesis testing of behavioral changes in
pedestrians in field environments and provides a case study demonstrating its application. The framework
employs computer-vision-based 3D tracking using existing CCTV networks to collect uncontrolled,
ecological data of pedestrian movement and extracts the nature and duration of pedestrian behaviors
without prior assumptions. To evaluate the framework, we conducted a case study in a specialty
retailer where, after collecting control data, pedestrian flow was intentionally constricted by introducing
in-aisle obstacles. We observed a marked rise in traversal and navigation of the aisle accompanied by
reductions in browsing and deliberation. We conclude that this framework offers utility in optimizing
retail environments and can be generalized to model the effects of environmental changes on behavior
in spaces where loitering, dwell time, or free flow of traffic are relevant design considerations.

Keywords: Pedestrian behavior, Spatial design, Machine vision, Behavior classification.

1. Introduction
Understanding how the design of physical environ-
ments shapes human movement and decision-making
is a central question in both applied and theoretical
research on pedestrian dynamics.

1.1. Motivation
The ability of spatial design to shape pedestrian be-
havior has drawn considerable public and scholarly
attention over recent decades [1–5]. Despite the impor-
tant ethical and practical ramifications of this area of
research, there remains a dearth of methods to quan-
tify, model, and test the impact of spatial alterations
on pedestrian behavior [6]. For clarity of discussion,
it is useful to informally group research in pedestrian
dynamics into three broad methodological domains
(following categorization influenced by [7]):
(1.) Modeling individual pedestrian movement across

varying densities.
(2.) Modeling collective or crowd movement at high

densities.
(3.) Examining how environmental changes influence

pedestrian behavior, particularly path selection.
The concentration of work in the first two domains

reflects not only the critical importance of safety-
related applications but also the practical constraints
of existing research tools. Person-counting and path-
tracking approaches are comparatively straightfor-
ward to deploy and validate, whereas capturing fine-
grained, unscripted behaviors in natural environments,
including semi-structured indoor settings such as retail
spaces – where environmental influences on pathing

have drawn significant attention [8–10] – remains tech-
nically and logistically challenging.

Many environmental modifications in real-world
settings do not elicit large or immediately observable
behavioral shifts, as evidenced by the literature on
behavioral nudging—which further illustrates the dif-
ficulty of detecting subtle or distributed behavioral
changes across populations [11]. As a result, design de-
cisions outside of regulatory mandates often rely more
on architectural intuition, established conventions,
and cost considerations than on the type of rigorous,
data-driven experimentation that characterizes digital
user experience (UX) research. Expanding the empiri-
cal reach of pedestrian studies therefore requires more
sensitive observational and analytical tools capable of
detecting nuanced behavioral variation in response to
environmental design.

In response to these limitations, this paper intro-
duces a methodological and technical framework for
testing how physical environmental changes influence
pedestrian behavior, and demonstrates its use through
a case study centered on a controlled field experiment
implemented in collaboration with a US-based spe-
cialty retailer.

1.2. Contributions
This paper makes two primary contributions to the
field of pedestrian dynamics.

First, it introduces a methodological and technical
framework for conducting controlled field studies that
measure subtle and complex changes in pedestrian
behavior resulting from modifications to the built en-
vironment. The framework integrates advances in
pose-based 3D tracking, trajectory segmentation, and
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unsupervised behavioral modeling into a unified pro-
cess for hypothesis testing in naturalistic settings.
This contribution is both methodological and techni-
cal in nature; providing both a systematic approach
for behavioral experimentation in the wild and demon-
strating a scalable architecture that operates on exist-
ing CCTV infrastructure. Together, these elements
enable researchers and practitioners to quantify behav-
ioral effects that have traditionally been observable
only in highly instrumented laboratory environments.

Second, we present a case study centered on a con-
trolled field experiment implemented in collaboration
with a US-based specialty retailer. The seven-week
study evaluates the behavioral impact of in-aisle pro-
motional shelving, testing a long-standing assumption
in retail design. While uncovering new behavioral phe-
nomena is not the primary aim of this work, the case
study demonstrates the framework’s ability to detect
and statistically evaluate subtle but important behav-
ioral shifts in uncontrolled, real-world conditions.

Broadly, this work advances the empirical and tech-
nical capacity of pedestrian dynamics by bridging
experimental rigor with practical deployability, offer-
ing a pathway to study how environmental design
choices shape human behavior at scale.

2. Methodological Framework
This section outlines both the conceptual design and
practical implementation of a generalizable framework
for testing how changes in physical environments influ-
ence pedestrian behavior. The framework is adaptable
across contexts, scalable to real-world environments,
and independent of any specific computer vision or ma-
chine learning pipeline. It is organized into two com-
plementary components: the Conceptual Frame-
work, which defines the logic and structure of the
method, and the Implementation, which describes
the specific algorithms and data processing techniques
used in our controlled field experiment.

2.1. Conceptual Framework
At its core, the framework transforms raw multi-
camera video streams into interpretable measures of
behavioral change through a structured sequence of
automated and human-in-the-loop steps. Each stage
serves a distinct conceptual role:
• Observation. Using existing multi-camera or

CCTV infrastructure, the system captures pedes-
trian motion at sufficient temporal and spatial res-
olution to reconstruct trajectories without instru-
menting participants or altering their behavior.

• Representation. Multi-view geometry and pose
estimation are used to convert raw imagery into
three-dimensional trajectories: continuous physical
records of movement through space and time.

• Segmentation. These trajectories are divided into
behaviorally homogeneous intervals using an unsu-
pervised process that detects changes in movement

2D Pose Detection
from Multi-Camera Video

3D Trajectory Reconstruction
(Pedestrian Journeys)

Segmentation into
Behavioral Segments

Unsupervised Embedding
Extraction

Clustering into
Behavioral Clusters

Human Labeling of
Behavioral Attributes

Experimental Phases:
Baseline vs. Modified Layout

Statistical Testing
of Cluster Frequency Changes

Figure 1. Conceptual overview of the methodological
framework. The process transforms raw video data
into behavioral representations and enables hypothesis
testing on how spatial modifications influence pedes-
trian behavior.

dynamics. Each segment represents a single behav-
ioral episode in the physical sense defined above.

• Abstraction. Each behavioral segment is trans-
formed into a compact representation, or embed-
ding, that captures its intrinsic temporal and geo-
metric characteristics.

• Aggregation. Segments with similar embeddings
are grouped into clusters, yielding recurring pat-
terns of motion that constitute the empirical basis
for behavioral classes.

• Interpretation. Human reviewers label a limited
number of representative samples from each clus-
ter with high-level behavioral attributes of interest.
These annotations anchor the unsupervised model
in human-understandable semantics.

• Comparison. Finally, the distribution of behav-
ioral clusters is compared across experimental con-
ditions (e.g., before and after a spatial modification)
to test hypotheses about how changes to the envi-
ronment influence pedestrian behavior.
Together, these stages define a generalizable process

for observing, representing, and statistically testing
behavioral change in naturalistic settings. The frame-
work is designed to be modular and scalable for large
environments where controlled experiments are oth-
erwise infeasible, allowing substitution of alternative
vision, embedding, or clustering algorithms in diverse
environments. In the following section, we describe
the specific algorithms and data processing techniques
used to implement this framework in our field experi-
ment.
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2.2. Specifically Addressed Conceptual
Challenges

Unlike in laboratory settings, pedestrian motion in
natural environments is continuous, unstructured, and
often driven by implicit intent rather than observable
goals. This makes it difficult to define where one
behavior ends and another begins, or to specify the
full set of behaviors a pedestrian might exhibit. In
practice, the act of defining, selecting, and catego-
rizing behaviors introduces human bias and limits
generalization. Measuring behavioral change requires
addressing specific critical problems, such as:
(1.) Behavioral Definition.

(a) What constitutes a behavior?
(b) What marks the start and end of a behavior?

(2.) Behavioral Selection.
(a) What are all of the behaviors a pedestrian can
engage in?

(b) Which of those behaviors are relevant to the
testing environment?

(3.) Behavioral Extraction.
(a) How can behavioral occurrences be captured
and categorized?

(b) How can this be done at sufficient scale and
reasonable cost?

Our framework attempts to resolve the difficult ques-
tions of definition and selection by redefining behavior
in operational rather than semantic terms and, by
doing so, elide the question of selection to the greatest
possible extent. We treat “behaviors” as nothing more
than processes that exhibit internal continuity and self-
similarity while also displaying external discontinuity
and dissimilarity. This perspective eliminates the need
to predefine behavioral categories and instead allows
them to emerge empirically from observed motion.
We also make a categorical differentiation between
behaviors and their attributes: while behaviors are
ineffable and latent, their attributes can be binary,
classifiable, and contribute to understanding the emer-
gent behavioral classes.

2.3. Implementation
The conceptual framework was operationalized us-
ing a combination of computer-vision, statistical, and
human-in-the-loop processes designed to transform
raw multi-camera video data into interpretable be-
havioral metrics. While the specific implementation
described here was developed in collaboration with
Standard AI and makes use of proprietary systems, all
processing stages can be reproduced using open-source
alternatives.

2.3.1. Pose Estimation and 3D Trajectory
Reconstruction

Video data from multiple overlapping cameras were
first processed using pose-estimation models to extract

two-dimensional joint locations for each visible individ-
ual in image space. These detections were temporally
linked within each camera view and then triangulated
across cameras to produce three-dimensional pedes-
trian trajectories, hereafter referred to as “pedestrian
journeys.”

Recent advances in markerless motion capture
have shown that pose-based methods can achieve
near–motion-capture accuracy using only multi-
camera or CCTV setups [12, 13]. Following a similar
approach, the system leverages synchronized video
inputs from existing overhead and fixed-angle cam-
eras to reconstruct continuous 3D trajectories without
instrumenting participants. Each trajectory is repre-
sented as a time-ordered series of keypoints describing
the spatial coordinates of the head, torso, and lower
limbs at 10 Hz.

2.3.2. Trajectory Smoothing and Behavioral
Segmentation

Reconstructed trajectories were filtered using a fourth-
order Butterworth low-pass filter to suppress high-
frequency noise and mitigate pose jitter caused by
occlusions or short-term estimation errors. The
smoothed trajectories were then segmented into be-
haviorally consistent intervals using an unsupervised
changepoint detection algorithm [14]. This method
identifies points of transition in motion dynamics by
examining temporal discontinuities in the derivatives
of position and orientation. This segmentation process
operationalizes the definition of “behavior” described
in Section 2.1: each segment represents a period of self-
similar movement bounded by points of discontinuity,
independent of any predefined behavioral taxonomy.
Segments are interpolated to a constant temporal
length and normalized by total displacement to en-
sure that subsequent comparisons reflect behavioral
structure rather than individual differences in speed
or physical ability. The overall effect is of partitioning
each trajectory into sequences of internally coherent
motion.

2.3.3. Behavioral Embedding and Clustering
Each normalized segment is transformed into a low-
dimensional embedding using multi-functional princi-
pal components analysis (MFPCA). MFPCA models
the trajectories and their derivatives such as veloc-
ity and angular velocity as continuous functions and
projects them onto a set of orthogonal basis functions
that capture the principal modes of variation across
all segments. This approach (similar to [15]) yields a
compact, unsupervised representation of motion dy-
namics that captures the most informative axes of
behavioral differentiation.

The resulting embeddings are clustered using k-
means to identify recurring patterns of motion. Clus-
ter membership reflects the proximity of behavioral
segments in the embedded space; segments grouped
together exhibit kinematic signatures most explicable
by similar functional mechanisms, or from another
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perspective, permit the highest degree of reconstruc-
tion of the original pedestrian motion. These clusters
form the empirical basis for defining behavior classes
in a data-driven manner, as the rates at which various
pedestrian activities occur vary substantially between
clusters, as seen below.

2.3.4. Human Labeling and Attribute
Calibration

To facilitate interpretation and ensure methodological
validation, a sample of segments from each behavioral
cluster were reviewed by trained human annotators.
Labelers assigned binary behavioral attributes such as
traversal, browsing, deliberation, or item interaction,
according to a predefined taxonomy relevant to re-
tail contexts. These attributes serve as interpretable
proxies for latent behavioral modes. By aggregating
attribute frequencies within clusters, we establish a
mapping between unsupervised cluster identities and
human-interpretable behaviors. Statistical hypothe-
sis testing may be performed on cluster frequencies
without this baseline, but establishing the baseline
permits researchers to validate the inherent logic in
the suggested direction of behavioral change and ex-
plain the consequences of such a change in concrete
terms.
Together, these stages constitute an end-to-end system
for detecting, representing, and quantifying behavioral
change in naturalistic environments. The framework’s
modular structure allows each component to be substi-
tuted or extended in line with particular requirements
or technological advances. In the following section,
we demonstrate the framework’s application through
a controlled field experiment conducted in a retail
environment.

3. Case Study: Retail Application
This section presents a case study demonstrating
the application of the proposed framework to a real-
world retail environment. The goal is to validate the
framework’s ability to detect and interpret behav-
ioral changes resulting from a controlled modification
to a store’s physical layout. In collaboration with
a US-based specialty retailer, we conducted a field
experiment designed to assess how changes in aisle ge-
ometry influence pedestrian movement and browsing
behavior.

3.1. Context
Physical retailers test the success of in-store changes
through reference to store transactions. The complex
nature of retail environments, where sales are influ-
enced by numerous outside factors makes it difficult
for even sophisticated sales-based analysis to attribute
changes in sales to in-store experimentation.

The prevalence of promotional in-aisle shelves across
retailers has increased in recent decades. While exper-
imentation is difficult, industry wide trends such as
this typically have been shown to positively impact

sales and profitability, and this change has an inherent
logic as promotional shelves increase the viewable area
within an aisle in the same amount of physical space
by introducing folds to the previously flat shelf.

However, this generally positive direction of effect
does not mean that promotional shelves have been
implemented in a way which is ubiquitously positive
or optimized. Retailers have been moving toward
very high counts of promotional shelves in each aisle,
with the expectation of continued positive marginal
returns. Existing research such as [16, 17] offered us
reason to believe that desirable pedestrian behaviors
do not simply scale linearly with the count of pro-
motional shelves and that the particular details of
implementation are significant.

3.2. Experimental Design
The study was conducted over a seven-week period in
a specialty retailer’s store aisle. Data collection lever-
aged a commercial vision-based analytics platform
developed by Standard AI, deployed on the retailer’s
pre-existing overhead security camera infrastructure.
Finetuned 2D pose detection models, each operating
at 10 FPS, generated multi-view detections that were
triangulated into 3D pedestrian trajectories, enabling
continuous observation of natural shopper behavior
without direct intervention.

During the first four weeks (the baseline phase),
pedestrian activity was recorded under normal layout
conditions. After week four, the retailer introduced
an intervention consistent with its established mer-
chandising principles: the addition of promotional
shelving units along the aisle’s south side, previously
unoccupied by such fixtures. This change reduced the
navigable width from approximately 2.5 m to 1.7 m,
producing a situationally plausible but physically sig-
nificant constriction. The intended design goal was
to encourage traversal-oriented movement by subtly
reducing the space available for browsing. The sub-
sequent four weeks (the intervention phase) were ob-
served under this modified configuration. No other
layout, pricing, or promotional changes occurred dur-
ing this period.

3.3. Rationale and Hypothesis
While promotional shelves are widely used in retail to
increase product exposure and sales, their behavioral
effects are rarely isolated or quantified. Prior studies
in pedestrian dynamics suggest that spatial constric-
tion may suppress browsing behavior by channeling
movement along narrower, more linear trajectories
[18, 19]. However, empirical verification of such ef-
fects in real-world environments remains limited.

Intuition derived from the social force model guided
our thinking in devising a pedestrian experiment in a
retail environment which would be more successful in
challenging existing retailer assumptions about spa-
tial layout, though a rigorous examination was not
pursued. As such we briefly detail a sketch of the
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(a) Baseline aisle
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y

(b) Added top-side promos

Figure 2. One possible consequence of a social-force
baseline in a shelf aisle: (b) symmetric top-side promos
raise repulsion on that side, pushing the shopper away
and yielding more shelf-parallel motion.

way that the social force model guided our thinking
in approaching the experimental design.

We use a standard social-force formulation [20, 21].
For pedestrian i (mass mi; position xi; velocity vi):

mi
dvi

dt
= mi

v0
i ei − vi

τi
+

∑
j ̸=i

fij +
∑
W

fiW .

v0
i ei is the desired velocity. fij are pedestrian

repulsions. fiW are wall/fixture repulsions.
A common repulsive form is fij = A exp

(
rij−dij

B

)
nij ,

with dij distance, rij sum of radii, and nij the normal
from j to i. Similar terms apply for fiW .
Although likely too simple to describe, in a quantita-
tive way, human navigation in a complex environment,
we deemed this model sufficient for a qualitative
understanding of pedestrian behavior in presence of
static obstacles.

Implications in a shelf aisle (qualitative):
(1) As shelves approach (narrower aisle), ∥fiW ∥ grows,
suppressing the shelf-normal component of motion;
paths become more parallel to shelves. This reduces
natural, orthogonal viewing opportunities of facings.
(2) Added promotional fixtures increase local repul-
sions (from walls and other shoppers). When placed
on the same side as the intended target shelf, sym-
metric fixtures fore/aft cancel lateral x-components of
force and yield a net y (shelf-normal) push away from
that side, diminishing browsing near promotions.

These sketches motivate our pre-registered hypoth-
esis: Reduced width from promos on the target

side leads to lower orthogonal viewing, which in
turn reduces local browsing near promotions.

From this perspective, we hypothesized that narrow-
ing the aisle would reduce browsing and deliberation
behaviors, while increasing traversal and navigational
activity. This effect would be detectable as a redis-
tribution of behavioral cluster frequencies under the
proposed framework. The null hypothesis of this test
was that the frequency of the occurrence of behavioral
clusters would prove unchanged between the baseline
phase and the test.

3.4. Data Collection and Analysis
Data were collected continuously over the seven-week
study period, encompassing both baseline and inter-
vention phases. Each shopper’s movement through
the camera coverage area was reconstructed as a 3D
trajectory at 10 Hz using triangulated detections from
finetuned 2D pose models operating on the retailer’s
existing overhead security cameras. As detailed in
Section 2.1, trajectories were preprocessed, segmented
into behaviorally consistent intervals, embedded via
multi-functional principal components analysis, and
clustered to yield interpretable behavioral categories.

For this case study, we specified that the clustering
model should produce 22 distinct behavioral clusters.
This number was empirically chosen as a balance
between breadth and interpretability: large enough to
capture the diversity of micro-behaviors observed in
retail settings, yet small enough to permit qualitative
validation through manual review of representative
trajectory samples. After initial trials with higher and
lower cluster counts, 22 was found to yield clusters
that were internally cohesive, externally distinct, and
qualitatively consistent when cross-checked against
synchronized video segments. This step ensured that
cluster membership meaningfully described behavior
rather than noise or individual differences in physical
ability.

To calibrate these clusters with interpretable mean-
ing, we leveraged a pre-existing ground-truth dataset
of 2,500 human-labeled behavioral segments drawn
from other retail environments. Each segment was
annotated with binary indicators for ten action at-
tributes: phone use, shopping cart use, item takes,
puts, and touches, traversal, browsing, deliberation,
uncertainty, and shelf attention. Averaging these
attribute frequencies within each cluster yielded an
attribute-rate vector describing the behavioral com-
position of that cluster.

Aggregating across the full observation window pro-
duced hundreds of thousands of behavioral segments.
The relative frequency of each behavioral cluster was
computed separately for the baseline and intervention
periods, forming the input distribution for statistical
testing. For completeness, we also examined journey-
level structure by grouping sequences of segment-level
clusters into a small number of meta-clusters describ-
ing whole trips. While these are discussed further in
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Section 4, they provided additional context for inter-
preting how local behavioral changes propagate to the
scale of entire shopping journeys.

3.5. Experimental Controls
Field experiments conducted outside of controlled
laboratory settings are inherently vulnerable to con-
founding influences. In retail environments, non-
experimental shifts in pedestrian behavior may arise
from both exogenous factors (e.g., seasonality, adver-
tising, or social media trends) and endogenous factors
(e.g., changes to layout, product placement, signage,
or pricing). Without explicit controls, hypothesis tests
risk capturing these effects rather than isolating the
impact of the intended intervention.

To mitigate these risks, we partnered with a retailer
whose business model and collaboration allowed us to
reduce confounding without requiring additional sta-
tistical correction. The retailer is a specialized seller
of staple goods with exceptionally low seasonality
relative to the broader industry. Customers are habit-
uated to purchasing specific brands at time-invariant
rates. The core offerings carry high switching costs
and the effects of external advertising or other similar
stimuli operate on timescales longer than our study
window. To further limit potential confounds, the re-
tailer made no layout, promotional, or price changes at
the study location during data collection. This stabil-
ity provided a unique opportunity to isolate behavioral
effects attributable solely to the spatial modification.

3.6. Statistical Evaluation
Using the labeled calibration described above, each
behavioral cluster has a characteristic vector of at-
tribute rates (e.g., average frequency of browsing or
traversal). Let p

(0)
k and p

(1)
k denote the proportions

of segments assigned to cluster k during the baseline
and intervention phases. The null hypothesis is that
the intervention does not alter the distribution of
behavioral clusters:

H0 : p
(0)
k = p

(1)
k for all k = 1, . . . , 22.

A 22 × 2 contingency table of cluster frequencies was
constructed, and a chi-square test of independence
was applied. Standardized residuals identified which
clusters contributed most to deviations from the null.
Combining these shifts with each cluster’s attribute
profile enabled estimation of aggregate behavioral
change across the study period, revealing how physical
alterations in space translated into measurable shifts
in pedestrian behavior.

4. Results and Evaluation
This section reports the empirical outcomes of the
retail field experiment and assesses how effectively
the proposed framework captured and explained those
behavioral changes.

4.1. Behavioral Effects of the
Intervention

Chi-square analysis revealed statistically significant
changes in pedestrian behavior at both the segment
and journey levels (p < 10−16). As such, we reject
the null hypothesis of behavioral stasis after the in-
troduction of pedestrian flow constriction. That the
spatial intervention produced a measurable redistri-
bution of behavioral patterns lends credence to the
proposed testing framework, especially as these shifts
were broadly consistent with expectations derived
from the social-force model and prior research in con-
strained pedestrian dynamics, though they diverged
from the retailer’s initial assumptions.

At the segment level, most of the 22 behavioral
clusters decreased in relative frequency, while five
clusters occurred 10% or more frequently. Cluster 8,
already a common behavioral mode, exhibited a 33%
increase in occurrence following the intervention and
contributed more than half of the total chi-square
test statistic (Fig. 3). This cluster was characterized
by continuous forward motion with minimal shelf en-
gagement; behavior characterizable as traversal rather
than browsing. While individual cluster-level signifi-
cance cannot be directly inferred in a multi-category
test, the aggregate pattern indicates that behaviors
associated with engagement decreased while those
associated with transit increased.

When the cluster membership migrations are
mapped onto human-labeled behavioral attributes
(Fig. 4), this shift manifests as a marked increase in
the rate of the “exclusive traversal” attribute. These
segments were ones in which shoppers moved through
the aisle without attending to the shelves. Attributes
indicating any degree of mental or physical engage-
ment with the environment (e.g., browsing, deliber-
ation, item interaction) declined in frequency, while
“uncertainty” rose slightly. In essence, shoppers en-
gaged less frequently in exploratory or deliberative
behaviors and were more likely to treat the aisle as
a passageway. This lends additional credence to the
formal hypothesis testing conducted above.

As well as at the segment level, the constriction pro-
duced statistically significant and consistent results
at the journey level, indicating that the constriction
can alter entire trips, not just brief segments. The
prevalence of trip-level clusters 0, 3, and 4 increased,
while clusters 1 and 2—those associated with higher
browsing and item-interaction rates—declined (Fig. 3).
Qualitative review of video samples confirmed a shift
toward more linear, goal-directed movement with re-
duced spatial exploration.

Overall, the findings indicate that narrowing the
aisle through added promotional shelving suppressed
behaviors associated with product engagement and
increased direct traversal, consistent with the hypoth-
esis that physical constriction elevates repulsive social
forces and reduces opportunities for orthogonal (shelf-
normal) movement.
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Figure 3. Chi-square contributions of behavioral
clusters before and after intervention. Cluster 8, rep-
resenting traversing behaviors, dominates the overall
test statistic.

Figure 4. Change in attribute-level behavioral fre-
quencies following intervention. Traversal increased,
while browsing and item interaction decreased.

4.2. Framework Performance and
Validation

The case study also served as a practical validation of
the proposed analytical framework. The combination
of multi-camera 3D tracking, behavioral segmentation,
and unsupervised clustering successfully detected nu-
anced shifts in shopper behavior without any manual
intervention during data collection. The resulting be-

Figure 5. (Top) Chi-square analysis of journey-level
clusters. (Bottom) Corresponding attribute-rate pro-
files show reduced browsing and deliberation in post-
intervention trips.

havioral clusters demonstrated internal consistency
and interpretability: visual inspection of representa-
tive segments confirmed that members of the same
cluster exhibited coherent motion patterns.

The framework’s sensitivity to subtle, population-
level changes was evident in its ability to capture a
redistribution of behavioral modes in response to an
environmental modification that would likely go un-
noticed by traditional retail analytics, which typically
rely on aggregate sales or dwell-time proxies. The
experimental design of baseline and treatment phases
enabled statistical validation through standard infer-
ential tests, avoiding the need for ad hoc heuristics or
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subjective interpretation. The overwhelming strength
of the significance detected in the chi-square analysis
points to the possibility of shortened testing phases,
allowing for testing that further reduces the influence
of confounders.

These findings show that modest spatial modifica-
tions can exert outsized influence on pedestrian dy-
namics, even at low densities, and highlight the value
of micro-scale analysis for retail and urban planning
alike. The framework can generalize to other contexts:
public seating placement, signage efficacy in trans-
port hubs, or balancing dwell time with circulation in
museum galleries [3, 11]. By coupling high-resolution
trajectory tracking, behavioral segmentation, and con-
trolled spatial interventions, this study offers a re-
producible, data-driven lens on how design nudges
pedestrian behavior. Beyond retail, such methods
enrich pedestrian- and evacuation-dynamics research
by enabling quantitative tests of spatial design.

From a practical perspective, the framework op-
erated entirely on existing CCTV infrastructure, re-
quiring no additional instrumentation or human ob-
servation, and processed data at near–real-time rates.
While the labeled attributes enhanced our understand-
ing of the behavioral clusters, these labels were re-
quired only for interpretability; the framework still en-
ables hypothesis testing without prior domain knowl-
edge. This demonstrates its feasibility for broader de-
ployment in dynamic environments where behavioral
validation would otherwise be costly or impractical.

4.3. Discussion and Broader Implications
The results are intuitively consistent and empirically
significant, challenging prevailing assumptions within
retail design. The intervention’s effect of dampened
browsing and deliberation while increasing straightfor-
ward traversal suggests that excessive in-aisle fixtures
may impose cognitive and physical friction that dis-
courages exploratory movement.

While the findings do not refute the long-standing
assumption that promotional shelves have a positive
marginal impact on sales, they reveal a more complex
relationship between the inclusion of in-aisle displays
and shopper behavior, suggesting that the point at
which their marginal returns become negative may
occur earlier than previously believed. Further, these
results highlight the power of micro-scale spatial de-
sign to shape pedestrian dynamics, even in low-density
environments such as retail aisles.

Methodologically, the study demonstrates the value
of integrating computer-vision–based behavioral seg-
mentation with experimental design principles tradi-
tionally reserved for controlled laboratory settings.
The ability to detect fine-grained, unsupervised be-
havioral shifts in real-world environments bridges the
gap between simulation-driven pedestrian modeling
and in-situ validation.

Beyond retail, the framework can extend to other
spatial domains, including evaluating how urban de-

sign interventions affect enjoyment of public places
or how signage placement influences navigation in
transportation hubs. By offering a scalable, data-
driven means to quantify behavioral response, this
approach provides a foundation for empirical testing
of environmental design hypotheses across disciplines.

Finally, while this case study relied on proprietary
3D pose estimation software, implementation of this
framework is not reliant on a particular specification
of any of the particular steps, and could be replicated
using open-source alternatives for pose detection and
multi-view reconstruction.

5. Conclusion
This study introduced and demonstrated a method-
ological framework for empirically testing how changes
to the built environment influence pedestrian behav-
ior in naturalistic settings. By integrating pose-based
multi-camera tracking, unsupervised behavioral seg-
mentation, and statistical hypothesis testing, the
framework enables rigorous, data-driven experimenta-
tion outside of controlled laboratory conditions.

Through its application in a real-world retail con-
text, we showed that even modest spatial modifica-
tions, such as adding in-aisle promotional shelving, can
produce measurable and interpretable shifts in pedes-
trian behavior. The case study confirmed that spatial
constriction reduces browsing and deliberation while
increasing direct traversal, highlighting how subtle
design interventions can meaningfully alter movement
dynamics and engagement patterns.

Beyond its immediate empirical findings, this work
demonstrates that high-fidelity computer vision and
unsupervised analytics can bridge the gap between
traditional simulation-based pedestrian modeling and
field-based behavioral validation. The approach of-
fers researchers and practitioners a scalable means of
quantifying behavioral responses to design changes,
using only existing camera infrastructure and minimal
manual supervision.

Future work will extend this framework across do-
mains and scales—from retail environments to trans-
portation hubs and public spaces—and refine its be-
havioral taxonomy and statistical inference methods.
More broadly, the framework provides a foundation
for connecting spatial design and human behavior
through reproducible, experiment-based evidence, ad-
vancing both the methodological and applied frontiers
of pedestrian dynamics.
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