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Abstract—We introduce BETWEEN—Boundary Estimation
through Time-Warping, Energy, & Entropy Neutralization—
an unsupervised framework for change point detection (CPD)
with multidimensional spatiotemporal data. BETWEEN aug-
ments greedy binary segmentation with iterative revision and
consolidation steps that steer partitions toward global optimality
without the restrictive monotonic-additive assumptions of PELT1

or FPOP2. Guided by principled limits on what CPD can resolve,
we apply an adaptive Butterworth filter that trims the search
space to genuine functional inflection points, slashing the effective
workload by roughly a factor of twenty-five and yielding a com-
parable reduction in computational overhead relative to Binary
Segmentation—even after BETWEEN’s additional revision and
consolidation passes. A novel gain function couples dynamic time
warping, energy density ratios, and Kullback–Leibler divergence,
allowing BETWEEN to recognize both subtle shape shifts and
large distributional jumps while remaining agnostic to class
labels, sampling rates, and segment length.

Experiments on two multivariate spatiotemporal benchmarks,
Human Activity Recognition (HAR) and Bee Waggle Dance, show
improvements of 10-20% over state-of-the-art CPD baselines.
Crucially, BETWEEN segments unstructured human and animal
behavior streams into coherent, self-similar “tokens” that feed
directly into downstream deep learning pipelines and allow for a
graphical representation of complex real-world processes such
as human behavior, enabling methodologies which can help
examine the transitions between discrete behavioral states. By
doing so, we re-frame CPD as an pre-processing step which
reduces dimensionality, rather than an end goal itself.

Index Terms—change point detection, multivariate time series,
unsupervised segmentation, dynamic time warping, behavioral
boundary detection, spatiotemporal data.

I. INTRODUCTION

In spatiotemporal data analysis, changepoint detection and
temporal classification are often treated as distinct tasks, de-
spite both relying on multidimensional time series. Automated
changepoint detection is of the utmost importance in contexts
where generated data volumes are extremely high, change-
points are rare, and the consequences of a missed changepoint
can prove devastating (i.e., fields like medicine [1] or electrical
power generation [2]). Meanwhile, spatiotemporal classifica-
tion has gained prominence for analyzing human behavior,
using data from sources such as smartphones, wearables, and
pose estimation in video [3]. These classifiers detect actions
like running or jumping from time series data. Yet, in any se-
quence with multiple labeled actions, classification inherently

1PELT—Pruned Exact Linear Time
2FPOP—Functional Pruning Optimal Partitioning

involves setting boundaries–implicitly detecting changepoints–
especially when predictions are made at the frame or window
level. Ensuring coherent transitions between actions often
requires explicit post-processing.

As sources of rich spatiotemporal data become more nu-
merous, there is reason to revisit the implicit separation of
these techniques. Current paradigms of deep learning analyses
on spatiotemporal data require extensive labeling of activity
classes to enable fully-supervised learning pipelines. Models
that have access to these rich labeled data perform very well,
but it is difficult to generate labeled action data in an efficient
and cost-effective manner; such labels typically require time-
intensive human work. In addition, most activities that humans
engage in occur in unstructured environments without clear
boundaries between activity classes.

To frame our approach, we distinguish between behaviors
and their attributes. In structured settings like orchestras,
binary attributes–e.g., a musician is playing or no–can effec-
tively characterize the behavior. In unstructured environments,
however, this correspondence breaks down. Someone may
be talking, eating, or sitting, but these attributes don’t fully
define what they are doing. In such settings, behaviors often
span overlapping and evolving attributes that lack clear labels.
This ambiguity challenges both classification and changepoint
detection models. Yet, partitioning data into coherent segments
remains essential for downstream modeling.

While some changepoint detection models such as Bayesian
On-line Changepoint Detection (BOCPD) have similar aims,
there are crucial assumptions and architectural decisions
which reduce their efficacy in the envisioned application. The
BOCPD family of models depend inherently on a deeply
understanding the data; the distribution of the data points
expected to be encountered, the average frequency of change-
points, the threshold for making decisions, and the data
windows that the model sees. Hyperparameter tuning based on
the performance of the model on a training dataset is almost
always employed to set the model in an appropriate state for
the domain and therefore is a fundamental challenge in the
application of these approaches to unstructured environments
where such knowledge cannot be assumed a priori.

Therefore, in unstructured environments where one in-
tends to apply deep-learning frameworks to better understand
spatiotemporal data, we propose a new process– Bound-
ary Estimation through Time Warping, Energy, & Entropy
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Neutralization (BETWEEN) – for spatiotemporal data seg-
mentation which inverts the typical framework, envisioning
automated and efficient changepoint detection as a pre–not
post–processing step to enhanced deep learning modeling
on spatiotemporal data in unstructured environments. It is
designed to partition unstructured spatiotemporal data into
self-similar and externally dissimilar behavioral processes
without manual labeling, with significantly reduced demands
for specialized domain knowledge. At the end of the CPD
process, a complex process like human behavior can easily
be represented graphically, enabling numerous techniques for
examining many dimensional spatiotemporal data.

We review key developments in changepoint detection and
examine limitations in boundary detection for unstructured
environments. We introduce our method, detailing data rep-
resentation, segmentation, and cost functions, followed by a
performance comparison on two benchmarks. We conclude
with a discussion of future work in behavioral segmentation.

II. RELATED WORK

CPD algorithms and methods such as greedy binary
segmentation [4], Kernel-Based Change Detection [5], [6],
Bayesian Online Changepoint Detection (BOCPD) [7], and
PELT (Pruned Exact Linear Time) [8] have brought the field
far beyond heuristics such as control thresholds on windowed
moving averages. More recent work has applied deep learning
methodologies such as Variational Autoencoders (VAEs) [9]
and RNNs [10] to the problem of changepoint detection. Ad-
vancements in modern CPD techniques have greatly enhanced
our ability to identify critical changes across a wide range of
complex, real-world datasets.

As diverse multidimensional spatiotemporal data about the
world has become increasingly available, researchers have
applied CPD frameworks to detect changepoints outside of
the domains where they were initially developed, tackling
problems such as changes in human behavioral states and
bee motion patterns with notable successes, but also with
significant drawbacks to each algorithmic approach.

Bayesian Online Changepoint Detection (BOCPD) [7] as-
sumes that each segment can be well-modeled by a simple
parametric family (often Gaussian), and it treats change-
points as instantaneous “jumps” rather than gradual shifts. In
practice, BOCPD also requires careful prior-specification and
hyperparameter tuning of window sizes and even frequencies;
decisions typically made by domain experts.

Pruned Exact Linear Time (PELT) [8] and FPOP [8] rely on
additive cost functions (negative log-likelihood under a Gaus-
sian assumption) and assume piecewise-constant parameters
within each segment. These methods treat changepoints as
abrupt and require that in-segment noise be homoscedastic or
follow a tractible distribution. Their assumptions greatly limit
the set of available cost functions.

Kernel-based change detection [5], [6] can handle non-
Gaussian or non-linear data, but typically still assumes a sharp
boundary between segments. Kernel bandwidth selection and

window-size tuning often necessitate extensive experimenta-
tion or expert knowledge, aided by labeled data.

Recent deep learning approaches (e.g., Variational Autoen-
coder or RNN-based CPD) either rely on large volumes
of labeled sequences to learn where boundaries lie [11] or
training the RNN as a time series forecaster based on large
volumes of domain data [10]. More than any other approach,
they view CPD as a supervised task emerging from a set of
known and labeled classes. While models like BOCPD make
assumptions about the ways in which transitional points occur,
trained approaches make fundamentally limiting assumptions
about which transitions the model will be capable of detecting.

Researchers have begun to address some of these limita-
tions in works such as Dynamic Interpretable Change Point
Detection [12]. Even that approach, which does deal with
spatiotemporal data and attempts to implement a solution
which requires as little domain knowledge as possible, is
hampered by the necessity of extensive hyperparameter tuning
for application on the dataset of choice.

III. ALGORITHMIC IMPLEMENTATION

In developing BETWEEN, we have reasoned from first
principles about the nature of behavioral change. What does
it mean for the physical expression of behavior to have
changed in an unstructured environment, where each state
might be ineffable? Posing this question has allowed us to
provide reasonable hypotheses about how we measure as-
pects of changepoints in practice. Fundamentally, we think
that boundaries ought to lie between changes in the “true”
functional expression underlying a behavior. Implicitly, many
CPD methods recognize this, with approaches that reduce to
“fitting models to windows and checking when the best model
changes ” [7] [13] [11] [10] [1] [14]. We agree in principle,
but think that approach has practical drawbacks if our aim is to
recognize that the best functional representation has changed
without fitting functions or proxies.

Instead, we crafted BETWEEN around uncovering differ-
ences in pattern, position, amplitude, and entropy. Through
the use of z-normalized dynamic time warping, we search
for changes in the basic pattern of the data. The energy
density ratio simultaneously captures changes in position and
amplitude. Finally, a Kullback-Leibler neutralization insists
that any potential changepoint demonstrate evidence of a
change in the underlying information.

We also made an initial assumption that all changes in
behavior which are observable from spatiotemporal data will
also be inflection points in functional representations of those
time series. This assumption is grounded in an understanding
of the target change points as transitional points between dif-
ferent states of behavior, even if those behaviors are complex.
While humans can transition behaviors in a manner practically
unobservable in spatiotemporal data (such as when a person
stops reading and their mind wanders), this does not break our
core assumption and in CPD based on time series, the only
data on which one can make predictions are the time series
themselves. This assumption serves to reduce the complexity
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of computations significantly, allowing for additions to the
typical binary segmentation that improve performance and
more closely approach global optimality.

A. Functional Representation

The functional representations of the data are created using
adaptively tuned Butterworth filters. The right sampling fre-
quency is imperative to the proper functioning of the segmen-
tation algorithm, especially in datasets representing diverse
underlying behaviors. Higher sampling frequencies preserve
more of the underlying information but introduce additional
computational overhead by generating a larger number of
inflection points for evaluation. Too low a sampling frequency
and the filter will remove information that might help de-
termine the desired changepoints. BETWEEN automatically
selects the cutoff frequency for the filter by analyzing the
spectral density of the time series at regular intervals between
[.05, .95 ∗ fN ]. The Nyquist frequency is a standard measure
of the maximum meaningful sampling frequency of a signal;
the coefficient is employed to avoid edge effects.

B. Segmentation Algorithm

BETWEEN’s segmentation algorithm is a variant of binary
segmentation. Binary segmentation approaches have offered
a solid compromise between algorithmic efficiency and eval-
uative performance on changepoint benchmarks. They work
by iteratively partitioning segments of time series into distinct
parts based on whether additional partitions offer improve-
ments to the loss function [15]. Revised implementations such
as PELT and FPOP achieve global optimality in O(n) time,
but they rely on assumptions which constrain the sort of
loss implementation that one can utilize, namely those of
additive losses and monotonicity [8] [16]. BETWEEN utilizes
a complex gain function for segmentation decisions, and as
such, implementation of those algorithms is not possible.

BETWEEN’s implementation of binary segmentation stands
apart from others in a few key aspects. A major downside to
greedy binary segmentation is the lack of a guarantee of global
optimality on the partitioning solution; the optimal 3 segment
solution to minimize the loss function might not have the 2
segment boundary as one of its two boundaries. To reach a
solution closer to global optimality, BETWEEN introduces
a revision stage every {n} iterations of the greedy binary
segmentation. For each of the candidate boundaries that have
been agreed upon in prior steps, BETWEEN tests the two
closest inflection points to that candidate. If either of them
improves the cost function, the candidate boundary is shifted
to that point. The order of evaluation for candidate boundary
shifts is randomized to ensure that early candidates are not
shifted more frequently than later ones.

Boundary-pair consolidation. After every r greedy iterations
(Fig. 1, bottom) BETWEEN performs a local consolidation:

1) Let {ck−1, ck} be two consecutive interior bound-
aries. Their enclosing endpoints are a = ck−2 and
b = ck+1. Thus the current segmentation of [a, b] is
[a, ck−1], [ck−1, ck], [ck, b].

t

z(t) Inf. 1 Inf. 2 Inf. 3 Inf. 4

t

Iter. 1

Iter. 2

Fig. 1. Top: signal with four inflection candidates (blue dashed). Bottom:
binary segmentation Iter 1 scores every split (0 → Infj and Infj → T );
Iter 2 selects Inflection 2 (red) and evaluates only splits within [0, Inf2] and
[Inf2, T ] (green).

2) Compute the Lcurrent = L[a,ck−1] + L[ck−1,ck] + L[ck,b].
3) Let Iab ⊂ (a, b) be the ordered set of inflection can-

didates inside [a, b]. For every ordered pair (iL, iR) ∈
Iab × Iab with a < iL < iR < b we compute the
replacement loss Ltest = L[a,iL] + L[iL,iR] + L[iR,b].

4) If Ltest < Lcurrent for any pair (iL, iR), replace
{ck−1, ck} with the best-scoring pair {i⋆L, i⋆R}. If no such
pair improves the loss, the original boundaries are kept.

Because adjusting {ck−1, ck} changes the three segments
they delimit, the exterior losses L([a, ck−1]) and L([ck, b])
must be recomputed; it is not enough to examine only the
interior segment. Empirically, the number of candidates |Iab| is
small (≈ 3% of frames), so the O(|Iab|2) scan is inexpensive.
This consolidation lets BETWEEN escape local optima that
greedy BinSeg alone would keep. Baronowski et. al take
a similar approach in their 2016 paper “Narrowest-Over-
Threshold Change-point Detection”, but as far as the authors
of this paper are able to tell, the consolidation stage is a novel
contribution to the traditional binary segmentation algorithm.

C. Cost Function

BETWEEN maximizes a gain function based on the dif-
ference between the product of the energy density ratio and
the normalized dynamic time warping distance between two
segments and a ratio of the squared median KL divergence
over the segments’ specific KL divergence.

Dynamic Time Warping (DTW) is an algorithm designed to
allow distance comparisons between two time series that may
differ in scale or sampling frequency; indeed, even within-
window frequency variations are permitted. Formally, let:
s(a) =

(
s
(a)
1 , s

(a)
2 , . . . , s

(a)
na

)
and s(b) =

(
s
(b)
1 , s

(b)
2 , . . . , s

(b)
nb

)
be two real-valued sequences of lengths na and nb. A warping
path π = ((i1, j1), (i2, j2), . . . , (iK , jK)) is a sequence of
index pairs satisfying:

( i1, j1 ) = (1, 1), ( iK , jK ) = (na, nb),

( ik+1, jk+1 ) ∈
{
( ik + 1, jk), (ik, jk + 1), (ik + 1, jk + 1)

}
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where k = 1, . . . ,K − 1, i1 ≤ i2 ≤ · · · ≤ iK
and j1 ≤ j2 ≤ · · · ≤ jK . Given a local point-wise
dissimilarity d

(
s
(a)
i , s

(b)
j

)
(we use the Euclidean norm), the

cost of a warping path π is Cost(π) =
∑

(i,j)∈π

∥∥s̃(a)i −s̃
(b)
j

∥∥
2
.

The dynamic-time-warping (DTW) distance between the two
sequences is the minimum such cost over all admissible paths:

DTWraw
(
s(a), s(b)

)
= min

π

∑
(i,j)∈π

∥∥s̃(a)i − s̃
(b)
j

∥∥
2

(1)

We utilize the fastDTW Python package to compute a near-
optimal DTWraw in O

(
max(n1, n2)

)
time. Because BE-

TWEEN is maximizing a gain function over the entire time
series T , we keep DTWraw in its raw (absolute) form rather
than normalizing by sequence length. Normalization would,
counterintuitively, reward shorter segments and allow “reward
hacking” by alternating very short and very long segments.

Interpolation and Length Heuristic. Evaluated segment
boundaries τ may yield subsequences of widely varying
lengths. To compare two segments s(a) and s(b) of lengths
na and nb, we resample in fixed order so that both be-
come sequences of equal interpolated length ℓ. Denote M =
max{na, nb}, ℓ = min

(
ℓmax,

⌊
M
2

⌋)
, where ℓmax is a user-

specified constant (e.g., ℓmax = 4000). Choosing ℓ = ⌊M/2⌋
rather than ℓ = M prevents artificially inflating DTWraw. For
example, if consecutive segments have lengths na = 20 and
nb = 200, then a naive interpolation to ℓ = 200 would force
evaluations over 400 interpolated indices, rather than the true
total of 220 observations in the original sequence. By halving
the maximum length, the effective DTW domain is restricted
to roughly the true combined span, which prevents the gain
function from “hacking” via alternating extremely long and
extremely short segments. (A Taylor-series analysis of such
oscillations shows that choosing ℓ = M introduces a multiplier
proportional to

√
nb/na in the gap between short- and long-

segment DTW scores, which ⌊M/2⌋ mitigates.)
Once ℓ is chosen, we define interpolation grids

ta =
{
0, 1

na−1 ,
2

na−1 , . . . , 1
}
,

u =
{
0, 1

ℓ−1 ,
2

ℓ−1 , . . . , 1
}

and similarly for tb. We then obtain s̃(a) ∈ Rℓ by

s̃
(a)
k = Interpolate

(
s(a), ta, uk

)
, k = 1, . . . , ℓ

and likewise for s̃(b). The raw DTW score on interpolated
sequences is DTWraw

(
s̃(a), s̃(b)

)
.

To temper the bias towards shorter segments and ensure that
short segments represent definitive pattern shifts, we then scale
by a sigmoid-shaped factor. Let

σ(x) =
1

1 + exp
(
−s(x−m)

) , m = 15, s = 0.1,

where m = 15 is a heuristic midpoint (e.g., for a 10 Hz
sensor, by 30 frames the sigmoid is effectively 1, reflecting
that Var

(
s
)

stabilizes by n ≈ 30). Define

scale factor = min
(
σ(na), σ(nb)

)
,

and set

DTWfinal = DTWraw
(
s̃(a), s̃(b)

)
× scale factor.

Minimum-Window Constraint. Because DTW and KL-
divergence estimates become unstable when a segment has
too few frames, we enforce a hard lower bound of nmin = 5
frames per segment. Empirically, when n < 5, KL

(
s(a) ∥ s(b)

)
is numerically unstable, and the DTW distance is driven
toward zero by the sigmoid based length scaler for segments
of that or lesser length.

IV. ENERGY DENSITY CONSIDERATIONS

The second positive component of the function is formed
by the symmetric ratio between the per-frame average squared
magnitude of the underlying kinematic or positional signals
over time, capturing both relative measures of activity intensity
as well as the “position” of that activity within the graph.

Formally, suppose a single segment is composed of F
dimensional observations xt =

(
xt,1, xt,2, . . . , xt,F

)
repre-

sented by the time series

X = {xt ∈ RF : t = 1, . . . , T},

We define the energy density of X by

E
(
X
)
=

1

T

T∑
t=1

F∑
f=1

x2
t,f (2)

We square each channel value at every time step, sum over all
F channels and over all T timestamps, and finally normalize
by the segment length T . This yields a single scalar reflecting
the overall “power” or “activity level” inside that window.

Because BETWEEN is particularly interested in how two
adjacent segments differ in motion intensity near their shared
boundary, we employ a boundary-weighted energy density
ratio. Let c denote a candidate boundary at time index t0. We
select a small buffer of at most M frames before and after t0,
and assign each frame τ a weight w(τ) so that observations
closer to t0 contribute more heavily. Specifically, we define

Wfull = 3fs, (3)
Wdecay = 3fs, (4)

M = Wfull +Wdecay = 6fs, (5)

where fs is the sampling frequency of the time series in
frames per second (Hz). In practice, for human spatiotemporal
behaviors, one rarely needs to look more than 3 seconds (as
humans typically complete behavioral transitions within a few
seconds) with full weight, and the cosine taper then extends
for an additional 3 seconds before the weight goes to zero
entirely in order to avoid abrupt cutoff. Thus M = 6fs
frames corresponds to a maximum 6-second buffer (so that
at |τ − t0| = 6fs, w(τ) = 0).

We assign each frame τ a weight
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w(τ) =


1, |τ − t0| ≤ Wfull ,

1 + cos
(

π
(
|τ−t0|−Wfull

)
Wdecay

)
2

, Wfull < |τ − t0| ≤ M ,

0, |τ − t0| > M .
(6)

Because Wfull = 3fs and Wdecay = 3fs, the weight decays
smoothly from 1 to 0 over the interval (3fs, 6fs]. In particular,∣∣τ − t0

∣∣ = Wfull +
Wdecay

2
= 3fs +

3fs
2

= 4.5fs,

w(τ) = 1
2

[
1 + cos(π2 )

]
= 1

2 . For example, if fs = 50Hz,
then 4.5fs = 225 frames—i.e. at 225 frames away from
the boundary, the contribution is 50%. By 300 frames (6fs),
w(τ) = 0.

Because frames with |τ − t0| > M receive zero weight, it
is equivalent (and clearer) to restrict all sums to the index set

Nt0 =
{
τ

∣∣ | τ − t0 | ≤ M
}

∩ {1, 2, . . . , T}.

Hence the boundary-weighted energy density can be written

Ebw
(
X; t0

)
=

1∑
τ∈Nt0

w(τ)

∑
τ∈Nt0

w(τ)
F∑

f=1

x2
τ,f (7)

By focusing energy computation on frames immediately sur-
rounding the boundary, BETWEEN more robustly detects
changes in motion intensity that coincide with a shift from
one behavioral phase to another. Note that because w(τ) = 1
for |τ − t0| ≤ 3fs, the central ±3fs frames contribute fully;
the cosine taper over the next 3fs frames smoothly attenuates
the contribution to 0 at |τ − t0| = 6fs. In practical terms,
if a human truly changes behavior at t0, by 9 seconds later
(9fs frames in total time), the segment’s kinematic pattern
will have shifted measurably, so there is no justification for
reaching past 6fs frames when evaluating energy near t0.

Sigmoid-Based Dampening for Short Segments. As noted
above, when either adjacent segment is very short (T < 5
frames), the energy computation can be unstable and the
raw energy ratio may blow up. To avoid spurious large
ratios when one segment is too short, we introduce a length-
based dampening that smoothly returns the energy ratio to 1
whenever either segment is near or below a minimal length.
Specifically, define the sigmoid function

σ(n) =
1

1 + exp
(
−0.1(n− 15)

) (8)

where n = segment length in frames. Because σ(n) ≈ 0
when n ≤ 1, and σ(30) ≈ 0.99, by 30 frames the sigmoid
is effectively saturated at 1.0. Now, suppose two neighboring
segments XL (“left”) and XR (“right”) have lengths nL and
nR, respectively. Define the raw energy ratio

Rraw =
Ebw

(
XL; c

)
Ebw

(
XR; c

) or
Ebw

(
XR; c

)
Ebw

(
XL; c

) ,

whichever exceeds 1. Let

L = min
(
σ(nL), σ(nR)

)
,

and define the dampened energy ratio

Rdamp =
(
1− L

)
· 1 + LRraw. (9)

In other words, Rdamp is a convex combination of the identity
value 1 and the raw ratio Rraw, with the weight L. When
both segments have at least 30 frames, σ(n) ≈ 1, so L ≈ 1
and Rdamp ≈ Rraw. When one segment has fewer than ≈ 15
frames, σ(n) ≪ 1, so L ≪ 1 and Rdamp ≈ 1, preventing any
spurious large ratio.

We intentionally use the uncentered energy in Eq.(2) rather
than variance or mean-centered energy. In spatial data, a
change in “position” (i.e., accelerating upward when sitting
→ standing) will shift all channels by a roughly constant
offset. If we had subtracted the mean first, that “static” tilt or
shift in position might vanish. By retaining uncentered squared
magnitudes, BETWEEN captures both changes in motion
intensity and changes in absolute displacement. Further, a
boundary without an Rdamp>1 is never precluded; In short:

E(X) =
1

T

T∑
t=1

F∑
f=1

x2
t,f

reflects both “activity” (variance) and “position” (mean).

Length-Scaling Sigmoid for DTW Penalty. For complete-
ness, recall that BETWEEN also uses a sigmoid of identical
form to Eq.(8) when scaling DTW distances by segment
length. If a segment has length n, we define

ℓ(n) =
1

1 + exp
(
−0.1(n− 15)

) = σ(n). (10)

Since the midpoint and steepness parameters are the same
in Eq.(8) and Eq.(10), both sigmoid functions share identical
behavior. In particular, ℓ(n) ≈ 0 when n ≤ 1 and ℓ(n) ≈ 1
when n ≥ 30. When computing the DTW scaling factor for
two segments of lengths na, nb, and denoting

scale factor = min
(
ℓ(na), ℓ(nb)

)
we scale the raw DTW distance by scale factor

DTWfinal = DTWraw × scale factor.

Thus, when either segment is very short (n < 15), the DTW
penalty vanishes, and when both segments exceed 30 frames,
the DTW distance is unscaled.

A. KL Divergence as a Penalty Term in BETWEEN

The maximization of cross-boundary entropy has been
well established in change-point detection (CPD) research for
years. In particular, BOCPD (Bayesian Online Change-Point
Detection), one of the most commonly employed and high-
performing forms of CPD, is inherently founded on maxi-
mizing entropy differences between the distributions formed
by the points on either side of a boundary. Summing across
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run-lengths ℓ = 0, 1, . . . ,min(t − 1, ℓmax), BOCPD updates
the probability that a change-point occurred at time t with
run-length ℓ (i.e., ℓ frames since the last change-point) in a
Bayesian manner; this probability is obtained by normalizing
two unnormalized “masses” (growth vs. change) for each ℓ.
Growth mass:

Gt(ℓ) = Pr
(
rt−1 = ℓ | x1:t−1

) (
1−H(ℓ)

)
× p

(
xt | rt−1 = ℓ, xt−ℓ:t−1

)
.

Change mass:

Ct(ℓ) = Pr
(
rt−1 = ℓ | x1:t−1

)
H(ℓ) p

(
xt | new-run prior

)
,

where:
• Pr(rt−1 = ℓ | x1:t−1) is the posterior probability that the

current segment began ℓ frames ago,
• (1−H(ℓ)) is the probability of “no change” (i.e. no new

change-point) at run-length ℓ, and H(ℓ) is the baseline
(hazard) probability of a change occurring exactly at run-
length ℓ,

• p
(
xt | rt−1 = ℓ, xt−ℓ:t−1

)
is the predictive likelihood

of xt under the existing segment that started ℓ frames
before, and

• p
(
xt | new-run prior

)
is the prior predictive likelihood if

xt starts a brand-new segment.
Once all growth and change masses for ℓ = 0, . . . ,min(t−

1, ℓmax) have been computed, BOCPD normalizes them so
that

min(t,ℓmax)∑
k=0

Pr
(
rt = k | x1:t

)
= 1.

Because BOCPD typically assumes a conjugate-exponential
family (e.g., Gaussian likelihood with a Normal–Inverse-
Gamma prior), only fixed-dimension sufficient statistics
(counts, sums, sums of squares, etc.) need to be carried
forward for each candidate ℓ to compute each predictive
likelihood. However, there are also versions of BOCPD which
replace the parametric predictive model with an empirical
distribution over the last ℓ observations. [7] In those cases, the
update at each time t is exactly the asymmetric KL divergence
between the empirical distribution formed by the previous ℓ
points and the prior predictive. Even in the exact Bayesian
recursion, the single-step log-likelihood ratio

∆t(ℓ) = log p
(
xt | rt−1 = ℓ, xt−ℓ:t−1

)
− log p

(
xt | new-run prior

)
serves as a measure of relative entropy between “continue this
run” and “start a new run.” In that sense, the Bayesian updating
process ultimately converges to a sum of log-likelihood ratios
(an asymmetric KL) over candidate ℓ, which aligns the total
change-point probability with the cumulative evidence for a
distributional shift between adjacent windows.

In theory, any true changepoint in a time series can be
captured as a cross-boundary entropy maximization, given
the right parametric model [17]. BOCPD operates by fitting
parametric models to segments since the last boundary and

instantiating a new boundary when the new model explains in-
coming data significantly better than the old one. For example,
if a model can distinguish “running” from “walking,” BOCPD
will favor the model that better fits new data. However, this
highlights a key issue: achieving strong performance often
requires building detailed activity-specific models—essentially
turning changepoint detection into a classification task under
a different name. Thus, although BOCPD’s use of

DKL

(
pSL

∥ pSR

)
is theoretically valid—since for any two empirical windows
one can fit Gaussian densities to compute KL divergence—the
practical burden of specifying and fitting those distributions
can be prohibitive, especially if the set of activities becomes
unknown. To avoid these issues while recognizing the the-
oretical importance of entropy changes at boundary points,
BETWEEN approaches the situation as an entropy neutraliza-
tion problem, and treats cross-boundary KL divergence as a
necessary but not sufficient condition: only if

DKL

(
SL ∥ SR

)
> KLbaseline

do we incur the cost of evaluating the energy- and DTW-based
pattern-change terms. Thereafter, chosen splits must maximize
the divergence between the DTW-Energy Ratio product and
the KL penalty term. Define

KLpenalty(b) =

(
KLbaseline

)2(
DKL(SL ∥ SR) + 10−6

)
× LSF(b)

, (11)

where SL and SR are the two segments left and right of
boundary b, and:

• DKL(SL ∥ SR) is the symmetric KL divergence between
Gaussian fits to SL and SR,

• KLbaseline is computed at step 0 and
• LSF(b) is a length-scaling factor based on segment

lengths nL and nR (see earlier commentary).

As the distributional difference between SL and SR increases,
the denominator grows, driving KLpenalty(b) toward zero. We
choose to square the median baseline in the numerator as a
first pass—empirically this gives good segmentation—though
future work could explore a gradnorm approach to balance the
KL term against DTW more precisely.

1) Estimating KLbaseline: We compute KLbaseline via ran-
dom segmentation sampling on the entire time series X =
{x1, . . . , xT }. Using Niter = 500 iterations and m = 10
random boundary points per iteration (with minimum segment
length nmin = 5), the procedure is as follows.

We compute KLbaseline by sampling random segment
boundaries and aggregating the resulting symmetric KL di-
vergences between adjacent segments. Let X = {x1, . . . , xT }
be the full time-series, and fix

Niter = 500, m = 10, nmin = 5.

Each iteration n = 1, . . . , Niter proceeds as follows:
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1. Randomly draw m distinct indices {i1, . . . , im} ⊂
{1, . . . , T}, then sort them so that

1 < i(1) < i(2) < · · · < i(m) < T.

2. Define the boundary sequence

b0 = 1, bj = i(j) (j = 1, . . . ,m), bm+1 = T.

3. For each j = 1, . . . ,m, form the two adjacent seg-
ments SL = {xbj−1

, xbj−1+1, . . . , xbj−1}, SR =
{xbj , xbj+1, . . . , xbj+1−1}. Only if |SL| ≥ nmin and |SR| ≥
nmin, compute the symmetric KL divergence

d = DKL

(
SL ∥ SR

)
,

and include d in Dall only if d > 0 and d is finite.
4. Repeat steps 1–3 for all n = 1, . . . , Niter.

After all iterations, let Dall denote the multiset of all
collected KL values. We then define

m̂ = median
(
Dall

)
, KLbaseline = max

{
m̂, 10−6

}
.

Because Dall is typically right-skewed and heavy-tailed, using
the median ensures that the square of KLbaseline reflects
values in the far right tail of boundary divergences without
having to directly specify the percentile we wish to cut KL
divergences off at; if a series has a higher proportion of
extremely high boundary divergences, that points to more
changepoints, so we don’t want to artificially limit the set
of potential boundaries. Moreover, with Niter = 500 and
m = 10, the resulting KLbaseline is empirically very stable,
and the sampling overhead is negligible compared to the
remainder of the segmentation pipeline.

In practice, 500 iterations yield a stable median with negli-
gible variation, and the sampling overhead is trivial compared
to the overall segmentation.

2) Gaussian KL Computation: For two segments SL,SR,
let nL, nR be their frame counts and let A,B ∈ RT×F be
their F -dimensional feature arrays after differencing. If either
nL < 2 or nR < 2 (or F = 0), we take DKL = 0. Otherwise,
we extract boundary windows of up to Wmax = ⌊10 fs⌋ frames
closest to the boundary:

WL = min{Wmax, nL − 1}, WR = min{Wmax, nR − 1}.

We let Ã be the last WL rows of A, and B̃ be the first WR

rows of B. We then interpolate each column to length ℓ =
min{ ℓmax, max(WL,WR)} (with ℓmax = 4000 by default).
After zero-centering and scaling by either provided global
standard deviations or by max{std(Ã[:, j], B̃[:, j]), 10−9} per
feature, we compute means µL, µR and covariances ΣL,ΣR.
We add a regularization

ε = max
{
10−8, 10−6 min

(
tr(ΣL), tr(ΣR)

)}
to each diagonal, then compute:

dLR = KL
(
N (µL,ΣL) ∥N (µR,ΣR)

)
,

dRL = KL
(
N (µR,ΣR) ∥N (µL,ΣL)

)
.

If either determinant is non-positive or any value is non-
finite, we set DKL = 0. Otherwise, DKL(SL ∥ SR) =
max{ 0, dLR + dRL}.

3) Integration into BETWEEN’s Gain Function: Within
BETWEEN’s gain function, each candidate boundary b that
splits a segment into two subsegments of lengths nL and nR

is evaluated by combining distributional, pattern, and energy
information. Formally, we define:

Gain(b) = ∆energy(b) − λkl KLpenalty(b),

where ∆energy(b) captures the change-in-energy and DTW-
based pattern-change terms when splitting at b, λkl > 0 is a
scalar weight balancing the KL penalty, and

KLpenalty(b) =

(
KLbaseline

)2(
DKL(SL ∥ SR) + 10−6

)
× LSF(b)

,

using KLbaseline as above and LSF(b) =
min

(
σ(nL), σ(nR)

)
, where σ(n) is defined by Eq.(8),

so that segments shorter than 5 frames yield nearly zero
weight and segments above 30 frames yield weight near 1.

A candidate b∗ is accepted if Gain(b∗) > 0 and maximizes
the net reduction in loss. This ensures that a split is retained
only if its distributional divergence is both statistically sig-
nificant relative to random baselines and accompanied by a
meaningful energy/pattern change.

Gain Function Summary
The gain at a candidate boundary b decomposes into:
1) KL-Penalty:

KLpenalty(b) =

(
KLbaseline

)2(
DKL(SL ∥ SR) + 10−6

)
LSF(b)

. (12)

where LSF(b) = min{σ(nL), σ(nR)}, σ(n) = 1

1+exp
(
−0.1 (n−15)

) .
2) DTW Distance:

DTWfinal(b) = DTWraw

(
s̃(L), s̃(R)

)
× min{ℓ(nL), ℓ(nR)}.

(13)
3) Weighted Energy Density Ratio:

Rraw(b) = max
(Ebw(SL; b)

Ebw(SR; b)
,
Ebw(SR; b)

Ebw(SL; b)

)
, (14)

Rdamp(b) =
(
1− L(b)

)
+ L(b)Rraw(b), (15)

with

ℓ(n) = σ(n), L(b) = min{σ(nL), σ(nR)},

and
Ebw(S; b) =

1∑
τ w(τ)

∑
τ

w(τ)
∑
f

x2
τ,f .

Combined Gain:

Gain(b) = DTWfinal(b)Rdamp(b)− λkl KLpenalty(b). (16)

When both DTWfinal is large (indicating a functional
pattern change) and Rdamp is high (indicating an energy-
density shift), the left hand term spikes, signaling a strong
candidate for a true behavioral change-point. Finally, Gain(b)
subtracts the scaled KL penalty, ensuring that only splits with
sufficiently large distributional divergence and meaningful
pattern/energy changes survive.
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V. COMPUTATIONAL COMPLEXITY

The gain function over greedy binary segmentation iter-
ations and revisions is the primary contributor to overall
complexity. Let T be the total number of frames, F the feature
dimension (F ≪ T ), fs the sampling rate, W = ⌊10fs⌋ on
two-second window, ℓmax = 4000, both treated as constants.

A. Baseline KL Estimation

Compute KLbaseline via Niter = 500 random segmentations
with m = 10 boundaries each. Each evaluation of symmetric
KL on two W×F windows costs O

(
WF 2+F 3

)
and there are

500×10 such evaluations (both constants). Hence the one-time
setup is O(F 3), negligible for small F .

B. Per-Boundary Evaluation

For a split inside an interval of length n, we perform: 1.
KL screening on two W -frame windows: O(WF 2 + F 3). 2.
DTW pattern change: differencing and z-normalization cost
O(nF ); interpolating to ℓ = O(1) and fastDTW cost O(1). 3.
Energy change: extracting an M = 6fs = O(1)-frame buffer
and computing weights costs O(F ). Therefore, each candidate
costs O

(
nF + F 3

)
.

C. Greedy Segmentation with Caching

• Iterations 1–2 (no cache). A segment of length n has
n−1 candidate splits. Evaluating each costs O(nF+F 3),
so one full pass costs

n−1∑
b=1

O(nF + F 3) = O
(
n2F + nF 3

)
.

On the initial segment (n = T ), that is O(T 2F + TF 3).
• Iteration k ≥ 3 (with cache). Suppose an interval [a, b]

of length N is split at i∗ ∈ (a, b) into lengths n′ = i∗−a
and n′′ = b− i∗. We must recompute splits in:

– [a, i∗] (cost O(n′2F + n′F 3)),
– [i∗, b] (cost O(n′′2F + n′′F 3)),
– the adjacent interval [p, a] if its right neighbor

changed from [a, b] to [a, i∗],
– the adjacent interval [b, q] if its left neighbor changed

from [a, b] to [i∗, b].
In particular, any interval whose neighbor boundary has
moved requires recomputation for all its splits. Empiri-
cally, by iteration 10 only ≈ 30% of the original splits
remain active, and by iteration 30 ≈ 3% remain.

• Amortized cost If splits ≈ halve intervals each iteration,
log2 T∑
i=0

(T

2i

)2

F = O(T 2F ),

log2 T∑
i=0

(T

2i

)
F 3 = O(TF 3).

But because only a decreasing fraction Rk of splits is
recomputed at iteration k (30% at k = 10, 3% at k = 30),
the effective runtime behaves like O

(
T log TF

)
.

• Revision & Consolidation. Every 20 iterations, each
existing boundary cj considers its two nearest inflec-
tions ij,L and ij,R. Let mj be the number of interior
inflections in ( ij,L , ij,R ). Testing all interior splits costs

O
(
m2

jF + mjF
3
)
. Summing over J ≪ T boundaries

and amortizing over 20 iterations adds at most

O
( 1

20

J∑
j=1

(m2
jF +mjF

3)
)
,

which remains ≪ O(T log TF ) since J and each mj are
small relative to T .

D. Inflection-Point Pruning

BETWEEN restricts candidates to inflection points (≈ 3%
of frames in HAR, so only ≈ T/100 splits are ever evaluated.
Even if each of these is fully recomputed, the cost is reduced
by ∼ 20–30× relative to scanning all T frames.

E. Comparison to Other CPD Methods

BETWEEN’s one-time O(F 3) baseline setup is modest (see
Table I). Its first two passes incur O(T 2F +TF 3), but cached
scores, KL screening (active splits drop to ≈ 30% by iter 10
and ≈ 3% by iter 30), and inflection-point pruning (≈ T/100
candidates) reduce the effective runtime to near O(T log T F ).
The infrequent (every 20 iterations) consolidation step adds an
amortized cost ≪ O(T log T F ). Consequently, BETWEEN
matches fast parametric detectors in speed while handling
unstructured, high-variance behavioral data gracefully.

VI. EVALUATION

BETWEEN was evaluated on Human Action Recognition
(HAR) [18], and Bee Waggle (2012), two spatiotemporal
datasets consisting of positional and rotational time series.

A. Human Action Recognition (HAR)

Dataset. 30 subjects perform six scripted actions—walk, walk-
upstairs, walk-downstairs, sit, stand, lie—while wearing a
waist-mounted smartphone.
Sensors & Signals. 3-axis accelerometer + 3-axis gyroscope
at 50 Hz (six-channel stream).
Characteristic. Sequences of ≈ 150 − 180 samples of 2.56s
(128 frames) with 50% overlap.
Labels / evaluation. Changepoints denoted by different activ-
ity labels during overlap. We run CPD on the uncut sequence
and score against TiVaCPD’s ±5 half-window tolerance.

TABLE I
ASYMPTOTIC COST PER SEQUENCE OF LENGTH T (FEATURE DIM. F )

Method Complexity Main driver

BOCPD (conjug.) O(TF 2) run-length grid
PELT / FPOP O(TF 2) pruning, additive cost
Kernel CPD O(T 2) kernel matrix
BETWEEN (worst) O(T 2F + TF 3) first two passes
BETWEEN (typical) O(T log T F ) cache + KL + prune
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Fig. 2. Segmentation performed on Dance 5 of the Bee Waggle Dataset.

Fig. 3. Segmentation performed on Dance 5 of the Bee Waggle Dataset.

B. Bee Waggle Dance Dataset

Dataset. High-resolution hive videos; automatic tracking
yields continuous (x, y, θ) trajectories for each bee.
Sampling & Signals. Six ∼30 Hz sequences (600–1200
triplets) capturing waggle runs and return loops; path unpre-
dictability makes CPD non-trivial.
Labels / evaluation. Original authors annotate waggle-run
phases (turning right, turning left, waggle). BETWEEN seg-
ments the raw trajectories without using these labels and is
scored against the original annotation set (the TCPD extension
is ignored, as it covers only one clip with two change points).
See Fig. 2 & 3 for examples.
Commentary: The TCPD release of the Bee Waggle data cov-
ers only one sequence with two human-labeled changepoints,
reflecting subjective shifts in perceived dance frequency rather
than objective behavior. While some CPD models use TCPD
labels, we benchmark against the original dataset.

TABLE II
PUBLISHED CHANGE–POINT–DETECTION RESULTS ON THE BEE DANCE
DATASET. BLANK CELLS ARE METRICS NOT REPORTED IN THE SOURCE.

Method
F1 (tol. M=5)

Trained / Default AUC η=8
TiVaCPD 0.45 – [12]
TiVaCPD-CovScore 0.34 – [12]
TiVaCPD-DistScore 0.32 – [12]
KL-CPD 0.13 – [12]
Roerich 0.40 – [12]
GraphTime 0.22 – [12]
TIRE 0.20 – [12]
BinSeg 0.597 / 0.097 – [19]
Microsoft SSA 0.583 / 0.279 – [19]
BOCPDMS 0.167 / 0.092 – [19]
mSSA (original) 0.404 / 0.124 – [19]
mSSA-MW 0.659 / 0.500 – [19]
HM-RNN – 0.362 [15]
RCN – 0.054 [15]
CNN – 0.192 [15]
GGM – 0.041 [15]
PRN-S – 0.119 [15]
DWN – 0.131 [15]
PRN – 0.400 [15]
BETWEEN (ours) 0.60 .436

TABLE III
PUBLISHED CPD RESULTS ON THE HAR DATASET ( [18], TOLERANCE

M=5) UNLESS NOTED.

Method Precision Recall F1

TiVaCPD 0.72 0.48 0.58 [12]
TiVaCPD-CovScore 0.62 0.56 0.57 [12]
TiVaCPD-DistScore 0.50 0.35 0.40 [12]
KL-CPD 0.66 0.20 0.30 [12]
Roerich 0.69 0.11 0.18 [12]
GraphTime 0.04 0.96 0.08 [12]
TIRE 0.52 0.14 0.22 [12]
BETWEEN (ours) M=5) 0.56 0.72 0.63
BETWEEN (ours) M=1) 0.43 0.54 0.46

BETWEEN achieves the second highest absolute F1 score
on the Bee Dance dataset with M = 5 (see Table II), the
highest AUC of any model at η = 8, and the highest F1 score
of any model on the HAR dataset with M = 53 (See Table
III). Despite this, we have reason to believe that these results
are stronger than they appear.

In [19], the authors propose an extension SSA models. Their
use of singular value decomposition is a very clever way to
avoid explicit parametric modeling and make the algorithm
more adaptable and flexible; however, a more practical com-

3Thresholded F1: Let B = {bi}Ni=1 and B̂ = {b̂j}N̂j=1. For tolerance
M ,

TP =
∣∣{b̂ ∈ B̂ : ∃ b ∈ B : |b̂−b| ≤ M}

∣∣, FP = |B̂|−TP, FN = |B|−TP,

F1 =
2TP

2TP + FP + FN
.

AUC: Let T = {0, 1, 2, 4, 8} and F1(t) be the corresponding scores. Then

AUC =
1

8− 0

|T |−1∑
i=1

(Ti+1 − Ti)
F1(Ti) + F1(Ti+1)

2
.
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parison would be of BETWEEN and the default mSSA models
– to achieve the results on the left side of the category, they’ve
tuned the parameters, such as the size of the moving window
and the number of principle components k, specifically for the
ground truth of this dataset.

The necessity of using a tolerance of M=5 for BETWEEN’s
F1 score for comparison purposes also somewhat understates
the frequency of a positive prediction in close proximity to
a changepoint. The usage of inflections to find appropriate
cutting points for the time series means that BETWEEN might
miss by a more few frames than without. As a result, the AUC
at η=8 is .436, higher than any of the deep learning models
surveyed, even though those models trained directly on the bee
dance data. At that point, BETWEEN has F1 of 0.731.

BETWEEN attains state-of-the-art results on HAR. The
tolerance M=5 reflects a comparison quirk: prior work
ran binary changepoint tests in 64-frame windows. Because
BETWEEN predicts at the frame level, competing meth-
ods—unable to issue multiple positives within a true-positive
window—show inflated precision. Nonetheless, BETWEEN
has the best F1, and even its M=5 score exceeds all but one
model class.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduce BETWEEN, a novel unsuper-
vised change point detection framework for multivariate spa-
tiotemporal sequences. Our approach emphasizes generality,
computational efficiency, and high segmentation quality, ad-
dressing key challenges in unsupervised time-series analysis.
BETWEEN requires no labeled supervision to identify seg-
ment boundaries, yet we have demonstrated broad applicability
across unstructured spatiotemporal domains.

Through an inflection-based pruning strategy and caching,
the algorithm significantly reduces the search space for po-
tential change points, achieving sub-quadratic runtime com-
plexity. By leveraging a hybrid gain function which combines
dynamic time warping distances, signal energy change ratio,
and Kullback-Leibler divergence for distributional shifts, the
framework attains superior accuracy, outperforming state-of-
the-art CPD algorithms and semantic segmentation methods
on real world spatiotemporal datasets without training. These
results indicate that the multi-criterion gain function can
robustly capture a range of change signatures.

We plan to extend this work to more rigorously balance
the DTW-Energy product and KL penalty, potentially with a
GradNorm-like scheme. We also aim to integrate deep learn-
ing—particularly variational autoencoders—into the segmen-
tation pipeline to capture higher-level temporal features and
improve cross-dimensional weighting. This should enhance
detection of abstract or context-dependent changepoints and
reduce false positives. Even without algorithmic changes, we
will examine how the gain function’s two components interact
to guide principled hyperparameter tuning.

Ultimately, we envision BETWEEN as an unsupervised
“tokenization” for spatiotemporal data, producing coherent
segments serving as input to downstream sequence models.

This abstraction could enable more scalable and interpretable
modeling for tasks like activity recognition and prediction.
BETWEEN’s success derives from demonstrated gains to
downstream learning. Together, these directions position BE-
TWEEN as a foundation for semantically-informed, scalable
sequence modeling across real-world spatiotemporal data.
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