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Abstract

Scientific workflows – models of computation that capture the orchestration of scientific
codes to conduct “in silico” research – are gaining recognition as an attractive alternative
to script-based orchestration. Despite growing interest, there are a number of fundamen-
tal challenges that researchers developing scientific workflow technologies must address,
including developing the underlying “science” of scientific workflows. In this article, we
present a broad classification of scientific workflow environments based on three major
phases of in-silico research as well as highlight active research projects that illustrate this
classification With our tripartite classification, based on the the phases of “in silico” re-
search, scientists will be capable of making more informed decisions regarding the adoption
of particular workflow environments.
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1 Introduction

In the last 30 years, science has undergone a radial transformation. In place of test tubes
and optics benches, chemists, physicists and experimental scientists in a host of other
disciplines are now using computer simulation as a means of discovering and validating
new science. This so-called “in silico” experimentation has been fueled by a number of
computer science advances including the ability to archive and distribute massive amounts
of data and share hardware resources via the Grid [1].

An activity central to “in silico” experimentation is orchestration – the assemblage of scien-
tific codes into an executable system with which to experiment. Orchestration is a complex
task that involves data management (locating data, reformatting, etc.), managing input
parameters for executables, and handling dependencies between processing elements.

Scientific Workflow Models – models of high level scientific tasks as stages of data pro-
cessing (workflow stages) and the data dependencies between these stages – have shown to
be a very useful abstraction for scientific orchestration. Workflow Environments process
these models, mapping stages onto computational (often Gridded) resources and plan the
required data movements to satisfy dependencies in the model. This mapping is often
referred to as a workflow instance or concrete workflow. Finally, a Workflow Engine steps
through the instance, executing the stages.

At NASA’s Jet Propulsion Laboratory, for example, scientists and engineers have developed
workflow systems to process data from a number of instruments, satellites and rovers. The
recently launched Phoenix mission to Mars and an Earth-observing spectral radiometer
mission called the Orbiting Carbon Observatory set to launch in 2008 both use workflow
systems to process raw instrument data into scientific products for the external science
community.

Despite these early adopter efforts, scientific workflows have not yet reached a large user
base. We have found that there are a number of significant challenges in this domain that
have yet to be addressed, despite the large number of scientific workflow systems from which
to chose [2]. One such challenge is that there is no standard workflow model, nor is there
a fundamental “science” of scientific workflows. At a recent National Science Foundation
workshop chaired by one of the authors, entitled ”Challenges of Scientific Workflows,” this
problem was cited as a challenge facing workflow researchers today [3].

One manifestation of this challenge which we will explore in this article is that requirements
for scientific workflow systems vary significantly between applications, suggesting that a
taxonomy of workflow systems based on the scientific research activities that they support
is needed. In this article, we show that classifying workflow systems based on phases of “in
silico” research to which they are applicable forms a classification useful for the scientist
interested in adopting workflow technology.
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The discernible phases of “in silico” research – discovery (the rapid investigation of a scien-
tific principle in which hypotheses are formed, tested, and iterated on rapidly), production
(the application of a newly formed scientific principle to large data sets for further vali-
dation), and distribution (the sharing of resulting data for vetting by the larger scientific
community) – each have distinct scientific workflow requirements. By making scientists
aware of these requirements, we intend to better inform their decision regarding the adop-
tion of a particular workflow technology.

In addition to this classification, we will present several current research efforts to further
our understanding of the science of scientific workflows in each of the three phases of “in
silico” research. Not only do these research vignettes highlight salient research in this
domain, but they serve to illustrate our tripartite classification for readers.

2 How are Workflows Used?

In order to explore the requirements scientific workflow environments must meet, it is
important that we first discuss the role of the workflow in scientific experimentation more
explicitly. By framing our workflow requirements discussion with an understanding of
scientists’ current experimentation practices, we intend to clarify the process of evaluating
particular workflow environments for given applications.

2.1 Orchestrating Experiments

Scientists have solved the problem of orchestration via a number of methods, including
scientific programming environments such as IDL and Matlab. The predominant orches-
tration mechanism, however, is the script. Scripting languages such as Perl (and more
recently Python) have allowed scientists to perform a number of common orchestration
tasks, including:

• specifying overarching process control flow,

• running pre-compiled executables (via command line or run-time bindings), and

• reformatting input and output data.

In common software engineering parlance, these scripts can be considered “glue code”
between more well-defined software modules.

There are a number of problems with script-based orchestration, however, that make work-
flow modeling an attractive alternative. Because the orchestrating script captures the ex-
periment – its setup (in the form of input parameters), its procedure (the control flow, or
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execution steps), and record of results (formatting and cataloging outputs) – it is integral
to the overall scientific effort and is an important artifact in its own right.

Scripts are difficult to maintain and easily obfuscate the original intention of the developer.
Lack of inherent structure or design guidelines makes script-based orchestration a largely
ad hoc process. Unlike traditional glue code, orchestration in scientific workflows cannot
be treated as throw-away!

2.2 A Description of Workflow Environments

Workflow environments are used to develop and process workflow models. Each of the
process elements of the workflow model is linked to a executable that forms a workflow
stage. A workflow engine steps through the workflow model, executing these stages and
managing the I/O requirements of each stage as specified by the model. This is akin to
the control flow functionality of script-based orchestration.

Figure 1: A basic workflow environment.

As illustrated in Figure 1, a workflow environment consist of not only a workflow engine,
but also a number of ancillary services. These ancillary services envelop many of the non-
control flow aspects of script-based orchestration, including resource discovery for accessing
data, fault handling, and data provenance cataloging. While resource discovery services
sometimes handle data reformatting issues, it is also common practice to use a preprocessing
workflow stage to handle format mismatches.
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3 Characterizing Workflow System Requirements

While good taxonomies of workflow environments exist [2, 4], each takes a bottom-up
approach, differentiating workflow approaches by the type of model used (e.g., petri nets
versus directed acyclic graphs), or by the particular strategy used in computational resource
allocation. While this type of characterization is beneficial to the expert audience, we
contend that a top-down taxonomy based on scientific goals addressed is more useful to
the scientist interested in adopting workflow technologies.

3.1 Phases of “in silico” Science

Like all scientific endeavors, in silico science has distinctive phases. To take an example
from biochemistry, in the early 1920 Macleod and Banting were the first doctors to success-
fully isolate and extract insulin and are credited with its discovery. Once various efforts to
refine their understanding of the structure and properties of insulin were completed, scien-
tists developed a number of techniques for producing insulin in large quantities, eventually
settling on genetically engineering synthetic insulin in the late 1970s.

Figure 2: Phases of the “in silico” process.

In Figure 2, we have described three phases of in silico science that mostly mirror the
processes of in vivo and in vitro science. These phases are discovery, production and
distribution.

Discovery in this context decribes the phase of development in which algorithms and tech-
niques are tested – the scientific “solution-space” is explored – and scientists arrive at a
process which yields the desired result. This is what Kepner has described as the lone
researcher process [5]. We will describe production, akin to the chemical engineering pro-
cess that was established to synthesize insulin in large quantities, as the engineering and
scientific effort to reproduce the process established in the discovery phase on a large scale.
Finally, distribution is a phase in which results of individual processes are shared, validated,
and new research goals are formulated.

We will now discuss each of these phases in greater detail, describing the discernible char-
acteristics of each type of workflow environment as well as the high-level requirements they
support.
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3.2 Discovery Workflow Characteristics

Discovery workflows are rapidly re-parameterized, allowing the scientist to explore alter-
natives quickly in order to iterate over the experiment until hypotheses are validated.
Discovery workflow environments support this type of dynamic experimentation.

The high-level requirements that a discovery workflow environment should satisfy include
aiding scientists in the formulation of abstract workflow models. Discovery workflow envi-
ronments should transform the abstract models into workflow instances.

3.3 Production Workflow Characteristics

As in the case of producing vast quantities of insulin, production workflow environments
are focused on repeatability. These environments should be capable of staging remote,
high volume data sets, cataloging results, and logging or handling faults. Unlike discovery
workflows, production workflows must incorporate substantial data management facilities.
Scientists using production workflow environments care less about the means of abstract
workflow representation than they do about the ability to automatically reproduce an
experiment.

The high-level requirements of a production workflow environment include handling the
non-orchestration aspects of workflow formation such as data resource discovery and data
provenance recording. Additionally, production workflow environments should aid the sci-
entist in converting existing scientific executables into workflow stages, including providing
means of accessing ancillary workflow services.

3.4 Distribution Workflow Characteristics

Unlike both discovery and production workflow services, distribution workflow environ-
ments focus on the retrieval of data. Distribution workflows are used to combine and re-
format data sets and deliver these data sets to remote scientists for further analysis.

The requirements for distribution workflow environments include support for rapidly speci-
fying abstract workflows (often focusing on graphical techniques for workflow specification),
and for remotely executing the resulting abstract workflows.

3.5 Choosing from the Workflow System Spectrum

It is important to note that many existing workflow systems share the traits of multiple
classes of scientific workflow as we have presented them. Additionally, multiple scientific
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applications the authors have studied fall into more than one of these categories.

While both discovery and distribution workflows must aid the scientist in developing ab-
stract workflows, the emphasis of distribution workflows is on the act of specification rather
on the dynamism of the resulting workflow. Likewise, production workflow environments
and discovery environments both manage data, although production environments must
do so with much greater autonomy in order to process large data sets.

Rather than present a clean taxonomy for its own sake, our principal goal in this work is
to aid scientists in understanding their own scientific workflow requirements, showing how
this approach can them help them to chose a workflow environment that caters to their
scientific goals.

4 Current Workflow Research

In order to illustrate this classification, we will present several current research projects
being conducted by the authors. Our intent in this section is two-fold: In showing how
each of these projects addresses the high-level requirements of a particular class of workflow
application, we will not only (1) highlight salient research topics in the area, but we will
also (2) illustrate our classification with real-world workflow environments.

4.1 Workflow Discovery: Wings

Workflow discovery is an exploration activity for scientists, whether systematically trying
alternatives or haphazardly looking for a surprising result. The discovery of useful work-
flows is accomplished by trying different combinations and configurations of components as
well as using new datasets or new components [4]. An environment for workflow discovery
must:

1. assist users in finding components, workflows, and datasets based on desired charac-
teristics or functions;

2. validate the newly created workflows with respect to requirements and constraints of
both components and datasets; and

3. facilitate the evolution and versioning of previously created workflows

Wings [6, 7] is an example of such a workflow discovery system. Wings represents work-
flows using semantic metadata properties of both components and datasets, represented
in Web Ontology Language (OWL). Wings uses (1) workflow representations that are ex-
pressed in a manner that is independent of the execution environment and (2) the Pegasus
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mapping and execution system that submits and monitors workflow executions [6]. In ad-
dition, Wings has constructs that express in a compact manner the parallel execution of
components to process concurrently subsets of a given dataset [7]. Codes are encapsulated
so that any execution requirements (such as target architectures or software library depen-
dencies) as well as input/output dataset requirements and properties are explicitly stated.
Code parameters that can be used to configure the codes (for scientists these may corre-
spond to different models in the experiment) are also represented explicitly and recorded
within the workflow representation. A model of each code is created to express all such
requirements, so they can be used flexibly by the workflow system as workflow components.
Component classes are created to capture common properties of alternative codes and their
configurations. The methodology for designing workflows, encapsulating components, and
formalizing metadata properties is outlined in [8].

Figure 3 shows how Wings represents workflows in data-independent and execution-independent
structures. For example, parallel computations over datasets, sketched on the top left, are
represented compactly in the Wings workflow on the right. The component representations
shown on the bottom left express whether they can process collections or data (e.g., com-
ponent C-many) or individual datasets (e.g., component C-one) as input. Wings exploits
these constraints and represents the parallel computations as a collection of components
(e.g., node NC1) that are expanded dynamically into individual executable jobs depend-
ing on the size of the dataset bound to the input variables (e.g., to the variable Coll-G).
For each of the new data products (e.g., those bound to Coll-Z), Wings generates meta-
data descriptions based on the metadata of the original datasets and the models of the
components.

Using these high-level and semantically rich representations, Wings can reason about com-
ponent and dataset properties to assist the user in composing and validating workflows.
Wings also uses these representations to generate the details that Pegasus needs to map
the workflows to the execution environment, and to generate metadata descriptions of new
datasets that result from workflow execution and that help track provenance of new data
products [6].

To facilitate the evolution of workflows, Wings expects each workflow to have its own
namespace and ontology definitions. All workflows are represented in OWL, and follow
conventions of web markup languages in importing ontologies and namespaces. Each on-
tology and namespace has a unique identifier and is never modified or deleted; new versions
are given new identifiers. Related workflows can import shared ontology definitions and
refer to common namespaces. Current research is exploring extensions to these capabilities
for more manageable version tracking, particularly in collaborative settings.
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Figure 3: Wings represents workflows in data-independent and execution-independent
structures.
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Figure 4: An architecture for scientific workflow stages including connectors to workflow
services.

4.2 Production Workflow Environment: SWSA

Production workflow environments, as previously stated, incorporate significant data man-
agement technology in order to reproduce scientific workflows on very large data sets.
Production environments must not only handle the scientific requirements of workflow sys-
tems but must also manage the significant engineering challenges of automatic processing
of large data sets.

Integration of existing scientific codes is a more significant challenge in production workflow
environments than in other workflow environments due to the demands of automatic pro-
cessing. Locating remote data sets, handling faults appropriately, cataloging large volumes
of data produced by the system, and managing complex resource mappings of workflow
stages onto Grid and MultiGrid environments require scientific workflow stages to access
a host of ancillary workflow services.

Scientific Workflow Software Architecture, of SWSA, is a current research effort at JPL and
USC that aims to provide a software architecture for workflow stages that clearly delineates
scientific code from the engineering aspects of the workflow stage. SWSA provides a
componentization of the scientific algorithm, separating out workflow service access to
specialized software connectors. This separation of concerns allows both scientists and
software engineers to converse about workflow stage design without requiring that each
domain practitioner become expert in both scientific and engineering fields [9].

SWSA uses a decomposition of an existing scientific code into scientific kernels. Kernels,
like code kernels in high performance computing, are code snippets that implement a single
scientific concept. In a graph theoretic sense, a kernel is a portion of the call dominance tree
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for the source code’s basic blocks that has a single source and a single sink – it has internal
scope and single entry and exit points. In addition to the scientific kernels, control/data
flow of the original source code in the form of a graph of calls made to execute each kernel
(its control), and the data dependancies between each kernel (its data-flow) must also be
generated. The current SWSA approach requires manual decomposition, though semi-
automatic approaches based of software architectural recovery are being explored.

In the second step in the architecting process, SWSA wraps these kernels in a component
interface, creating Modules as seen in Figure 4. The control flow/data flow of the original
program is implemented in a hierarchically-composed exogenous connector as used in [10].
Finally, calls to ancillary workflow services are then made by an invoking connector. An
engineer can manage the engineering requirements of the scientific workflow via custom
handlers that access services such as data discovery, data provenance registries, and fault
registries.

4.3 Distribution Workflow Environment: OODT

Once a production workflow has generated the necessary scientific information, that infor-
mation needs to be appropriately disseminated to the scientific community to effectively
communicate the results. As has been noted previously [11], as the study sample increases,
so does the chance of discovery. In the Internet age, scientists have begun to lean on Internet
technologies and large scale data movement capabilities to take advantage of this principle,
sharing their raw science data and analyses with colleagues throughout the world.

Distribution workflows are those that enable scientific results to be spread to the science
community, leveraging data movement technologies, and (re-)packaging technologies to
move data to science users. This process is underpinned by distribution scenarios, which
specify important properties of a data distribution (e.g., the total volume to be delivered,
the number of delivery intervals, the number of users to send data to, etc.). As shown in
Figure 5, distribution workflows typically have four distinct workflow stages:

Data Access – The scientific information produced by a production workflow must be
accessed (e.g., from a database management system, a file system, or some other
repository) before it can be disseminated.

Data Sub-setting – Once accessed, data may need to be (re-)packaged, or subsetted,
before being delivered to its external science customers.

Movement Technology Selection – Before data distribution/dissemination, an appro-
priate data movement technology (e.g., FTP, HTTP, Bittorrent) must be selected.

Data Distribution – Once all prior stages are complete, the data can be transferred to
the science community.
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To illustrate the complexity of a distribution workflow, consider this representative use
case:

More than 100 gigabytes (GB) of Planetary Data System (PDS) SPICE ker-
nel datasets (that describe planetary mission navigation information) and PDS
data sets need to be subsetted and sent across the wide-area network (WAN)
from the PDS Engineering Node at NASA’s Jet Propulsion Laboratory (JPL)
to the European Space Agency (ESA) and from JPL across the local-area net-
work (LAN) to the (local) PDS navigation (NAIF) node. The data must be
delivered securely (using port-based, firewall-pass through) to over 100 different
engineering analysts, and project managers, totaling ten distinct types of users.
The consensus amongst the users is that they would like the data delivered in
no more than 1000 delivery intervals, and due to the underlying network ca-
pacities of the dedicated LAN to the NAIF and WAN to ESA, the data must
be delivered in 1MB to 1 GB chunks during each interval. The data must reach
its destination quickly in both cases (due to the sensitivity of the information,
as well as the urgency with which it is needed), so scalability and efficiency are
the most desired properties of the transfer.

Clearly, such scenarios involve the dissemination of large amounts of information from
data producers (e.g., the PDS Engineering Node), to data consumers (e.g., ESA). There
are a number of emerging large-scale data dissemination technologies available that pur-
port to transfer data from producers to consumers in an efficient fashion, and to satisfy
requirements such as those induced by our example scenario.

In our experience however, some technologies are more amenable to different classes of dis-
tribution scenarios than others: for example, Grid [1] technologies (such as GridFTP) are
particularly well suited to handle fast, reliable, highly-parallel data transfer over the public
Internet; however, this benefit comes at the expense of running heavyweight infrastructure
(e.g., security trust authorities, Web servers, metadata catalog services, etc.). On the other
hand, peer-to-peer technologies, such as Bittorrent, are inherently more light-weight and as
fast as grid technologies, but at the expense of reliability and dependability. Distribution
workflows must be able to decide, either with user feedback or autonomously, the appropri-
ate data movement technology, and dissemination pattern (e.g., peer-to-peer, client/server)
to employ in order to satisfy use cases such as the PDS data movement problem described
above.

Our recent work has dealt with understanding how to construct distribution workflows
that trade the above use cases, and technology choices, in the context of the Object Ori-
ented Data Technology (OODT) data distribution framework [12], at JPL. OODT provides
services for data (re-)packaging, subsetting and delivery of large amounts of information,
across heterogeneous organizational structures, to users across the world. In addition to
OODT, our recent work at the USC has led to the construction of the Data-Intensive

12



Distribution Workflow

Data 
Access

Data Sub-
setting

Movement 
Technology
Selection

Data 
Distribution

Figure 1: A basic workflow environment.

3 Characterizing Workflow System Requirements

While good taxonomies of workflow environments exist [?, ?], each takes a bottom-up
approach, differentiating workflow approaches by the type of model used (e.g., petri nets
versus directed acyclic graphs), or by the particular strategy used in computational resource
allocation. While this type of characterization is beneficial to the expert audience, we
contend that a top-down taxonomy based on scientific goals addressed is more useful to
the scientist interested in adopting workflow technologies.

3.1 Phases of “in silico” Science

Like all scientific endeavors, in silico science has distinctive phases. To take an example
from biochemistry, in the early 1920 Macleod and Banting were the first doctors to success-
fully isolate and extract insulin and are credited with its discovery. Once various efforts to
refine their understanding of the structure and properties of insulin were completed, scien-
tists developed a number of techniques for producing insulin in large quantities, eventually
settling on genetically engineering synthetic insulin in the late 1970s.

In Figure 2, we have described three phases of in silico science that mostly mirror the
processes of in vivo and in vitro science. These phases are discovery, production and
distribution.

Discovery in this context decribes the phase of development in which algorithms and tech-
niques are tested–the scientific “solution-space” is explored–and scientists arrive at a pro-

4

Science
Community

Production Workflow

Figure 5: Distribution Workflow Example.

Software COnnectors (DISCO) decision-making framework [13], a software extension built
on top of OODT that uses architectural information and data distribution metadata to
autonomously decide the appropriate data movement technology to employ for a distribu-
tion scenario, or class of scenarios. In our experience, the combination of a data movement
infrastructure, and a decision-making framework that is able to choose the underlying
dissemination pattern and technology to satisfy scenario requirements are essential to suc-
cessfully implement and design distribution workflows.

5 Summary and Future Work

In this article, we have presented a classification of scientific workflow environments based
on the type of scientific workflow they support. This is a top-down classification based on
the type of scientific effort the user is interested in accomplishing, in contrast to existing
bottom-up approaches.

In our future work, we plan to continue fundamental research into the “science” of scientific
workflow technology. This includes developing more rigorous workflow models that can help
to bridge between discovery and production workflow environments.

Additionally, we continue to develop approaches that will ease adoption of workflow tech-
nology, including improved integration of legacy scientific codes, better methodologies for
adopting workflow modeling over script-based orchestration, and decision making frame-
works for delivering resulting data products to the external scientific community.
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